Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 298: 102546, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34717206

RESUMO

When particulate-laden droplets evaporate, they leave behind complex patterns on the substrate depending on their composition and the dynamics of their evaporation. Over the past two decades, there has been an increased interest in interpreting these patterns due to their numerous applications in biomedicine, forensics, food quality analysis and inkjet printing. The objective of this review is to investigate the use of patterns from dried drops as a characterisation and diagnosis technique. The patterns left behind by dried drops of various complex fluids are categorised. The potential applications of these patterns are presented, focussing primarily on healthcare, where the future impact could be greatest. A discussion on the limitations which must be overcome and prospective works that may be carried out to allow for widespread implementation of this technique is presented in conclusion.


Assuntos
Atenção à Saúde , Estudos Prospectivos
2.
Nat Commun ; 8: 14783, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28294114

RESUMO

The evaporation of a liquid drop on a solid substrate is a remarkably common phenomenon. Yet, the complexity of the underlying mechanisms has constrained previous studies to spherically symmetric configurations. Here we investigate well-defined, non-spherical evaporating drops of pure liquids and binary mixtures. We deduce a universal scaling law for the evaporation rate valid for any shape and demonstrate that more curved regions lead to preferential localized depositions in particle-laden drops. Furthermore, geometry induces well-defined flow structures within the drop that change according to the driving mechanism. In the case of binary mixtures, geometry dictates the spatial segregation of the more volatile component as it is depleted. Our results suggest that the drop geometry can be exploited to prescribe the particle deposition and evaporative dynamics of pure drops and the mixing characteristics of multicomponent drops, which may be of interest to a wide range of industrial and scientific applications.

4.
Adv Colloid Interface Sci ; 169(1): 26-39, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21867984

RESUMO

The confinement of chemical reactions in nano-capsules can lead to a dramatic effect on the equilibrium constant of these latter. Indeed, capillary effects due to the curvature and surface energy of nano-capsules can alter in a noticeable way the evolution of reactions occurring within. Nano-encapsulation of bio-materials has attracted lately wide interest from the scientific community because of the great potential of its applications in biomedical areas and targeted therapies. The present paper focuses one's attention on alterations of conformation mechanisms due to extremely confining and interacting solvated dipolar macromolecules at their isoelectric point. As a specific example studied here, the folding-unfolding reaction of proteins (particularly RNase A and creatine kinase CK) is drastically changed when encapsulated in solid inorganic hollow nano-capsules. The effects demonstrated in this work can be extended to a wide variety of nano-encapsulation situations. The design and sizing of nano-capsules can even make use of the effects shown in the present study to achieve better and more effective encapsulation.


Assuntos
Nanocápsulas/química , Dobramento de Proteína , Desdobramento de Proteína , Proteínas/química , Creatina Quinase/química , Conformação Proteica , Ribonuclease Pancreático/química
5.
Langmuir ; 27(8): 4572-7, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21434625

RESUMO

In this Article, we demonstrate the dependence of the lifetime of a volatile droplet on the hydrophobicity of the substrate. Ethanol droplets placed on the molecularly smooth surfaces of three polymers, applied to substrates by spin-coating, showed distinct types of behavior depending on the hydrophobicity of the latter. High contact angles, θ, lead to fairly regular recession of the triple line during liquid evaporation at essentially constant θ, whereas low contact angle caused pinning, θ decreasing with time. The latter case leads to shorter drop lifetimes.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Polímeros/química , Compostos Orgânicos Voláteis/química , Etanol/química , Meia-Vida , Propriedades de Superfície
6.
J Colloid Interface Sci ; 355(2): 509-11, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21215411

RESUMO

This communication focuses on the capillary pressure effect in nano-objects. Indeed the change in pressure inside encapsulated biomaterials due to capillary effects can drastically alter the chemical equilibrium and the kinetics of biological reactions. This can potentially be exploited to design specific encapsulations in hollow solid nano-spheres or nano-tubes as carriers to optimise biochemical processes.


Assuntos
Composição de Medicamentos/métodos , Dobramento de Proteína , Desdobramento de Proteína , Proteínas/química , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Cinética , Nanosferas/química , Nanotecnologia/métodos , Nanotubos/química , Pressão , Termodinâmica
7.
Adv Colloid Interface Sci ; 161(1-2): 171-80, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19931850

RESUMO

We review the thermodynamic approach to determining the surface tension of solid-fluid interfaces. If the pressure is in the narrow range where the contact angle, θ, can exist, then for isothermal systems, adsorption at the solid-liquid interface affects γ(SL) or θ, but γ(SV) is very nearly equal γ(LV), the surface tension of the adsorbing fluid. For a liquid partially filling a cylinder, the pressure in the liquid phase at the three-phase line, x(3)(L), depends on the curvature of the three-phase line, C(cl), but the line tension can play no role, since it acts perpendicular to the cylinder wall. C(cl) is decreased as the cylinder diameter is increased; x(3)(L) is increased; and θ increases. For a given value of C(cl), x(3)(L) can be changed by rotating the cylinder or by changing the height of the three-phase line in a gravitational field. In all cases, for water in borosilicate glass cylinders, the value of θ is shown to increase as x(3)(L) is increased. This behaviour requires the Gibbsian adsorption at the solid-liquid interface to be negative, indicating the liquid concentration in the interphase is less than that in the bulk liquid. For sessile droplets, the value of θ depends on both x(3)(L) and C(cl). If the value of θ for spherical sessile droplets is measured as a function of C(cl), the adsorption at the solid-liquid interface that would give that dependence can be determined. It is unnecessary to introduce the line tension hypothesis to explain the dependence of θ on C(cl). Adsorption at the solid-liquid interface gives a full explanation.

8.
Langmuir ; 25(6): 3601-9, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19275181

RESUMO

We consider the dynamics of a slender, evaporating droplet containing nanoparticles. We use lubrication theory to derive a coupled system of equations that govern the film thickness and the concentration of nanoparticles. These equations account for capillarity, Marangoni stresses, evaporation, and disjoining pressure; the nanoparticle-induced structural component of the disjoining pressure is also considered. Contact line singularities are avoided through the adsorption of ultrathin films wherein evaporation is suppressed by the disjoining pressure; a similar approach has recently been used by Ajaev [J. Fluid Mech. 2005, 528, 279-296] who has built on the previous work of Moosman and Homsy [J. Colloid Interface Sci. 1980, 73, 212-223]. The results of our numerical simulations indicate that, depending on the value of system parameters, the droplet exhibits a variety of different behaviours, which include spreading, evaporation-driven retraction, contact line pinning, and "terrace" formation.

9.
Adv Colloid Interface Sci ; 147-148: 263-71, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19019321

RESUMO

The influence of aluminium nanoparticles on the evaporation and wetting dynamics of ethanol sessile droplets on a heated PTFE surface is investigated experimentally. The experimental technique uses a goniometer to measure the evolution in time of the shape of the droplets (contact angle, base diameter and volume). The evaporation rate is deduced from the measurements of the evolution of volume in time. During the "pinning" phase and contrary to what is expected, the presence of nanoparticles leads to a reduction of the evaporation rate compared to the base fluid. It is found that the deposition of nanoparticles into the triple contact line wedge during the evaporation of the droplet causes a greater pinning time for nanofluid droplets. The overall evaporation time for base fluid droplets is found to be longer than for nanofluid ones. The wetting dynamics of the droplets throughout the evaporation process shows major influence of nanoparticles. Depinning contact angles tend to be larger for nanofluid droplets than for base liquid ones. Over a range of imposed substrate temperatures, no effect on the nanofluids depinning contact angle is observed. The alteration of contact line behavior as well as wettability can have important implications in a wide range of applications, e.g. two phase boiling heat transfer [Kim, S. J. et al., Appl. Phys. Lett., 2006, 89, 153107].

10.
Langmuir ; 24(17): 9207-10, 2008 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-18671417

RESUMO

In this letter we show that the Marangoni flow contribution to the evaporation rate of small heated water droplets resting on hot substrates is negligible. We compare data of evaporating droplet experiments with numerical results and assess the effect of Marangoni flow and its contribution to the evaporation process. We demonstrate that heat conduction inside these water droplets is sufficient to give an accurate estimate of evaporation rates. Although convection in evaporating water droplets remains an open problem, our aim in this study is to demonstrate that these effects can be neglected in the investigation of evaporation rate evaluation. It is worth noting that the presented results apply to volatile heated drops which might differ from spontaneously evaporating cases.


Assuntos
Água/química , Físico-Química/métodos , Calefação , Temperatura Alta , Modelos Teóricos , Propriedades de Superfície , Temperatura , Termodinâmica , Fatores de Tempo
11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(5 Pt 2): 056315, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18233764

RESUMO

Recent experiments and models for the spreading of liquids laden with nanoparticles have demonstrated particle layering at the three-phase contact line; this is associated with the structural component of the disjoining pressure. Effects driven by structural disjoining pressures occur on scales longer than the diameter of a particle, below which other disjoining pressure components such as van der Waals and electrostatic forces are dominant. Motivated by these experimental observations, we investigate the dynamic spreading of a droplet laden with nanoparticles in the presence of structural disjoining pressure effects. We use lubrication theory to derive evolution equations for the interfacial location and the concentration of particles. These equations account for the presence of the structural component of the disjoining pressure for film thicknesses exceeding the diameter of a nanoparticle; below such thicknesses, van der Waals forces are assumed to be operative. The resulting evolution equations, for the particle motion and free surface position, are solved allowing for the viscosity to vary as a function of nanoparticle concentration. The results of our numerical simulations demonstrate qualitative agreement with experimental observations of a "step" emerging from the contact line. The results are also relevant to a wide range of other phenomena involving layering, or terraced spreading of nanodroplets, or stepwise thinning of micellar thin films.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(5 Pt 2): 056302, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-16089644

RESUMO

Marangoni-driven instabilities of a liquid-vapor interface of ethanol formed in a horizontally oriented capillary tube of 600 microm diameter are described. Instabilities of the interface are reported as well as instabilities of the liquid flow underneath the meniscus. The experimental results consist of visual observation of the interface, microscale particle image velocimetry measurements of the liquid flow and ir temperature measurements of the interface. The instabilities are found in both the flow structure and the interfacial temperature which present a periodic oscillatory pattern with a characteristic frequency of about 5 Hz. The interface also oscillates periodically, having a characteristic frequency of about 1.4 Hz. The differential evaporative cooling along the extended meniscus in the triple-line region produces a temperature difference which sustains the liquid-thermocapillary Marangoni-driven convection. A linear stability analysis based on a one-sided model, modified to take into account evaporation, is used to show that the self-induced temperature difference at the triple-line region is responsible for the observed interfacial instabilities. The instabilities in the flow pattern are due to competition between the surface tension driving force and gravity and are also found to be influenced by the meniscus instabilities.

13.
Adv Colloid Interface Sci ; 86(3): 153-93, 2000 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-10997763

RESUMO

After a brief introduction on the variables which describe the physico-chemical properties of a fluid surface, this paper compares, in a very simple way, the equilibrium constant of homogeneous and heterogeneous reactions taking place in spherical micro-objects (uncharged and charged droplets and bubbles) and in media bordered by a flat interface. This quantity is by definition the exponential of the dimensionless standard chemical affinity whose values (< or = 0, > or = 0) may indicate the direction and the importance of the reaction (strictly true when the mixing term of the affinity is zero). The classical thermodynamic approach combined with the Laplace equation shows that: (i) high surface tension and high curvature influence the equilibrium constant, this effect being, however, much more important for bubbles than for droplets; (ii) charges on droplets reduce this effect; (iii) the constant of reaction taking place in the vapour in contact with a charged droplet depends significantly on the electric field pressure; (iv) reactions in droplets dispersed in the liquid phase are discussed and, in particular, capillarity seems to play a negligible role on reactions in micro-emulsions; (v) the surface amount of a gas bubble component transferred in the continuous liquid can be related to capillary quantities; (vi) expanding (or shrinking) bubble induced by a chemical reaction is analysed by using an extended Laplace law which includes the volumetric flow rate; (vii) the Laplace law is discussed in the frame of the choice of the dividing surface. Numerous actual examples from the atmosphere, sonochemistry and metallurgy illustrate the theory proposed. One of the interest, among other points, is that small objects (specially bubbles) give the potentiality to obtain, for steady or (near) equilibrium states, large amount of components which would not be possible when dealing with large reservoirs.


Assuntos
Termodinâmica , Água/química , Ar , Matemática , Modelos Teóricos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...