Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Endocrinol ; 29(4): 542-57, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25751312

RESUMO

Human islet ß-cells exploit an autocrine dopamine (DA)-mediated inhibitory circuit to regulate insulin secretion. ß-Cells also express the DA active transporter and the large neutral amino acid transporter heterodimer enabling them to import circulating DA or its biosynthetic precursor, L-3,4-dihydroxyphenylalanine (L-DOPA). The capacity to import DA or L-DOPA from the extracellular space possibly indicates that DA may be an endocrine signal as well. In humans, a mixed meal stimulus is accompanied by contemporary serum excursions of incretins, DA and L-DOPA, suggesting that DA may act as an anti-incretin as postulated by the foregut hypothesis proposed to explain the early effects of bariatric surgery on type 2 diabetes. In this report, we take a translational step backwards and characterize the kinetics of plasma DA and incretin production after a mixed meal challenge in a rat model and study the integration of incretin and DA signaling at the biochemical level in a rodent ß-cell line and islets. We found that there are similar excursions of incretins and DA in rats, as those reported in humans, after a mixed meal challenge and that DA counters incretin enhanced glucose-stimulated insulin secretion and intracellular signaling at multiple points from dampening calcium fluxes to inhibiting proliferation as well as apoptosis. Our data suggest that DA is an important regulator of insulin secretion and may represent 1 axis of a gut level circuit of glucose and ß-cell mass homeostasis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Dopamina/farmacologia , Polipeptídeo Inibidor Gástrico/farmacologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Adulto , Animais , Glicemia/metabolismo , Linhagem Celular , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Somatostatina/farmacologia
2.
Appl Microbiol Biotechnol ; 98(14): 6317-28, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24682477

RESUMO

Our investigation of the catalytic properties of Saccharomyces cerevisiae α-glucosidase (AGL) using hydroxybenzyl alcohol (HBA) isomers as transglucosylation substrates and their glucosides in hydrolytic reactions demonstrated interesting findings pertaining to the aglycon specificity of this important enzyme. AGL specificity increased from the para(p)- to the ortho(o)-HBA isomer in transglucosylation, whereas such AGL aglycon specificity was not seen in hydrolysis, thus indicating that the second step of the reaction (i.e., binding of the glucosyl acceptor) is rate-determining. To study the influence of substitution pattern on AGL kinetics, we compared AGL specificity, inferred from kinetic constants, for HBA isomers and other aglycon substrates. The demonstrated inhibitory effects of HBA isomers and their corresponding glucosides on AGL-catalyzed hydrolysis of p-nitrophenyl α-glucoside (PNPG) suggest that HBA glucosides act as competitive, whereas HBA isomers are noncompetitive, inhibitors. As such, we postulate that aromatic moieties cannot bind to an active site unless an enzyme-glucosyl complex has already formed, but they can interact with other regions of the enzyme molecule resulting in inhibition.


Assuntos
Saccharomyces cerevisiae/enzimologia , alfa-Glucosidases/metabolismo , Hidrólise , Cinética , Especificidade por Substrato , alfa-Glucosidases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...