Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Gene Ther ; 31(6): 842-850, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38332046

RESUMO

Lynch syndrome (LS) is an inherited condition characterized by an increased risk of developing cancer, in particular colorectal cancer (CRC). Microsatellite instability (MSI) is the main feature of (pre)cancerous lesions occurring in LS patients. Close endoscopic surveillance is the only option available to reduce CRC morbidity and mortality. However, it may fail to intercept interval cancers and patients' compliance to such an invasive procedure may decrease over the years. The development of a minimally invasive test able to detect (pre)cancerous colorectal lesions, could thus help tailor surveillance programs in LS patients. Taking advantage of an endoscopic surveillance program, we retrospectively assessed the instability of five microsatellites (BAT26, BAT25, NR24, NR21, and Mono27) in liquid biopsies collected at baseline and possibly at two further endoscopic rounds. For this purpose, we tested a new multiplex drop-off digital polymerase chain reaction (dPCR) assay, reaching mutant allele frequencies (MAFs) as low as 0.01%. Overall, 78 plasma samples at the three time-points from 18 patients with baseline (pre)cancerous lesions and 18 controls were available for molecular analysis. At baseline, the MAFs of BAT26, BAT25 and NR24 were significantly higher in samples of patients with lesions but did not differ with respect to the grade of dysplasia or any other clinico-pathological characteristics. When all markers were combined to determine MSI in blood, this test was able to discriminate lesion-bearing patients with an AUC of 0.80 (95%CI: 0.66; 0.94).


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Instabilidade de Microssatélites , Humanos , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Biópsia Líquida/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Adulto , Estudos Retrospectivos , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Lesões Pré-Cancerosas/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/diagnóstico , Biomarcadores Tumorais/genética
2.
Cancer Epidemiol Biomarkers Prev ; 31(11): 2020-2029, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36112827

RESUMO

BACKGROUND: Low-dose CT (LDCT) screening trials have shown that lung cancer early detection saves lives. However, a better stratification of the screening population is still needed. In this respect, we generated and prospectively validated a plasma miRNA signature classifier (MSC) able to categorize screening participants according to lung cancer risk. Here, we aimed to deeply characterize the peripheral immune profile and develop a diagnostic immune signature classifier to further implement blood testing in lung cancer screening. METHODS: Peripheral blood mononuclear cell (PBMC) samples collected from 20 patients with LDCT-detected lung cancer and 20 matched cancer-free screening volunteers were analyzed by flow cytometry using multiplex panels characterizing both lymphoid and myeloid immune subsets. Data were validated in PBMC from 40 patients with lung cancer and 40 matched controls and in a lung cancer specificity set including 27 subjects with suspicious lung nodules. A qPCR-based gene expression signature was generated resembling selected immune subsets. RESULTS: Monocytic myeloid-derived suppressor cell (MDSC), polymorphonuclear MDSC, intermediate monocytes and CD8+PD-1+ T cells distinguished patients with lung cancer from controls with AUCs values of 0.94/0.72/0.88 in the training, validation, and lung cancer specificity set, respectively. AUCs raised up to 1.00/0.84/0.92 in subgroup analysis considering only MSC-negative subjects. A 14-immune genes expression signature distinguished patients from controls with AUC values of 0.76 in the validation set and 0.83 in MSC-negative subjects. CONCLUSIONS: An immune-based classifier can enhance the accuracy of blood testing, thus supporting the contribution of systemic immunity to lung carcinogenesis. IMPACT: Implementing LDCT screening trials with minimally invasive blood tests could help reduce unnecessary procedures and optimize cost-effectiveness.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , Neoplasias Pulmonares/genética , Detecção Precoce de Câncer/métodos , Leucócitos Mononucleares , Biomarcadores Tumorais/genética , MicroRNAs/genética
3.
J Exp Clin Cancer Res ; 40(1): 237, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34289890

RESUMO

BACKGROUND: Extracellular vesicles (EVs) containing specific subsets of functional biomolecules are released by all cell types and analysis of circulating EVs can provide diagnostic and prognostic information. To date, little is known regarding the role of EVs both as biomarkers and potential key players in human lung cancer. METHODS: Plasma EVs were isolated from 40 cancer-free heavy-smokers classified according to a validated 24-microRNA signature classifier (MSC) at high (MSCpos-EVs) or low (MSCneg-EVs) risk to develop lung cancer. EVs origin and functional properties were investigated using in vitro 3D cultures and in vivo models. The prognostic value of miRNAs inside EVs was assessed in training and in validation cohorts of 54 and 48 lung cancer patients, respectively. RESULTS: Different membrane composition, biological cargo and pro-tumorigenic activity were observed in MSCpos vs MSCneg-EVs. Mechanistically, in vitro and in vivo results showed that miR-126 and miR-320 from MSCpos-EVs increased pro-angiogenic phenotype of endothelial cells and M2 polarization of macrophage, respectively. MSCpos-EVs prompted 3D proliferation of non-tumorigenic epithelial cells through c-Myc transfer. Moreover, hypoxia was shown to stimulate the secretion of EVs containing c-Myc from fibroblasts, miR-126-EVs from endothelial cells and miR-320-EVs from granulocytes. Lung cancer patients with higher levels of mir-320 into EVs displayed a significantly shorter overall survival in training [HR2.96] and validation sets [HR2.68]. CONCLUSION: Overall our data provide a new perspective on the pro-tumorigenic role of circulating EVs in high risk smokers and highlight the significance of miR-320-EVs as a new prognostic biomarker in lung cancer patients.


Assuntos
Neoplasias Pulmonares/genética , MicroRNAs/metabolismo , Células Estromais/metabolismo , Idoso , Proliferação de Células , Vesículas Extracelulares , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Fatores de Risco
4.
Mol Oncol ; 15(11): 2969-2988, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34107168

RESUMO

Lung cancer is the leading cause of cancer-related death worldwide. Late diagnosis and metastatic dissemination contribute to its low survival rate. Since microRNA (miRNA) deregulation triggers lung carcinogenesis, miRNAs might represent an interesting therapeutic tool for lung cancer management. We identified seven miRNAs, including miR-126-3p and miR-221-3p, that are deregulated in tumours compared with normal tissues in a series of 38 non-small-cell lung cancer patients. A negative correlation between these two miRNAs was associated with poor patient survival. Concomitant miR-126-3p replacement and miR-221-3p inhibition, but not modulation of either miRNA alone, reduced lung cancer cell viability by inhibiting AKT signalling. PIK3R2 and PTEN were validated as direct targets of miR-126-3p and miR-221-3p, respectively. Simultaneous miRNA modulation reduced metastatic dissemination of lung cancer cells both in vitro and in vivo through CXCR4 inhibition. Systemic delivery of a combination of miR-126-3p mimic and miR-221-3p inhibitor encapsulated in lipid nanoparticles reduced lung cancer patient-derived xenograft growth through blockade of the PIK3R2-AKT pathway. Our findings reveal that cotargeting miR-126-3p and miR-221-3p to hamper both tumour growth and metastasis could be a new therapeutic approach for lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Lipossomos , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Nanopartículas , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
5.
Cancers (Basel) ; 11(9)2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533233

RESUMO

Adolescents and young adults (AYA) with rhabdomyosarcoma (RMS) form a subgroup of patients whose optimal clinical management and access to care remain a challenge and whose survival lacks behind that of children diagnosed with histologically similar tumors. Understanding the tumor biology that differentiates children from AYA-RMS could provide critical information and drive new initiatives to improve the final outcome. MicroRNA (miRNA) and gene expression profiling (GEP) was evaluated in a RMS cohort of 49 tumor and 15 non-neoplastic tissues. miRNAs analysis identified miR-223 over-expression and miR-431 down-regulation in AYA, validated by Real-Time PCR and miRNA in situ hybridization (ISH). GEP analysis detected 793 age-correlated genes in tumors, of which 194 were anti-correlated. NOTCH2, FGFR1/2 were significantly down-modulated in AYA-RMS. miR-223 was associated with up-regulation of epithelial mesenchymal translation (EMT) and inflammatory pathways, whereas miR-431 was correlated to myogenic differentiation and muscle metabolism. GEP showed an increase in genes associated with CD4 memory resting cells and a decrease in genes associated with γδ T-cells in AYA-RMS. Immunohistochemistry (IHC) analysis demonstrated an increase of infiltrated CD4, CD8, and neutrophils in AYA-RMS tumors. Our results show that aggressiveness of AYA-RMS could be explained by differences in microenvironmental signal modulation mediated by tumor cells, suggesting a fundamental role of immune contexture in AYA-RMS development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...