Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 10): 1021-31, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19770499

RESUMO

The Tbd_0210 gene of the chemolithotrophic bacterium Thiobacillus denitrificans is annotated to encode a 60.5 kDa bifunctional enzyme with ATP sulfurylase and APS kinase activity. This putative bifunctional enzyme was cloned, expressed and structurally characterized. The 2.95 A resolution X-ray crystal structure reported here revealed a hexameric assembly with D(3) symmetry. Each subunit contains a large N-terminal sulfurylase-like domain and a C-terminal APS kinase domain reminiscent of the two-domain fungal ATP sulfurylases of Penicillium chrysogenum and Saccharomyces cerevisiae, which also exhibit a hexameric assembly. However, the T. denitrificans enzyme exhibits numerous structural and sequence differences in the N-terminal domain that render it inactive with respect to ATP sulfurylase activity. Surprisingly, the C-terminal domain does indeed display APS kinase activity, indicating that this gene product is a true APS kinase. Therefore, these results provide the first structural insights into a unique hexameric APS kinase that contains a nonfunctional ATP sulfurylase-like domain of unknown function.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Thiobacillus/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Sulfato Adenililtransferase/metabolismo
2.
Arch Biochem Biophys ; 489(1-2): 110-7, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19664586

RESUMO

The Thiobacillus denitrificans genome contains two sequences corresponding to ATP sulfurylase (Tbd_0210 and Tbd_0874). Both genes were cloned and expressed protein characterized. The larger protein (Tbd_0210; 544 residues) possesses an N-terminal ATP sulfurylase domain and a C-terminal APS kinase domain and was therefore annotated as a bifunctional enzyme. But, the protein was not bifunctional because it lacked ATP sulfurylase activity. However, the enzyme did possess APS kinase activity and displayed substrate inhibition by APS. Truncated protein missing the N-terminal domain had <2% APS kinase activity suggesting the function of the inactive sulfurylase domain is to promote the oligomerization of the APS kinase domains. The smaller gene product (Tbd_0874; 402 residues) possessed strong ATP sulfurylase activity with kinetic properties that appear to be kinetically optimized for the direction of APS utilization and ATP+sulfate production, which is consistent with an enzyme that functions physiologically to produce inorganic sulfate.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/química , Sulfato Adenililtransferase/química , Thiobacillus/enzimologia , Clonagem Molecular , Expressão Gênica , Cinética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Sulfato Adenililtransferase/genética , Thiobacillus/genética
3.
Biochemistry ; 47(48): 12777-86, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-18991405

RESUMO

Most assimilatory bacteria, fungi, and plants species reduce sulfate (in the activated form of APS or PAPS) to produce reduced sulfur. In yeast, PAPS reductase reduces PAPS to sulfite and PAP. Despite the difference in substrate specificity and catalytic cofactor, PAPS reductase is homologous to APS reductase in both sequence and structure, and they are suggested to share the same catalytic mechanism. Metazoans do not possess the sulfate reduction pathway, which makes APS/PAPS reductases potential drug targets for human pathogens. Here, we present the 2.05 A resolution crystal structure of the yeast PAPS reductase binary complex with product PAP bound. The N-terminal region mediates dimeric interactions resulting in a unique homodimer assembly not seen in previous APS/PAPS reductase structures. The "pyrophosphate-binding" sequence (47)TTAFGLTG(54) defines the substrate 3'-phosphate binding pocket. In yeast, Gly54 replaces a conserved aspartate found in APS reductases vacating space and charge to accommodate the 3'-phosphate of PAPS, thus regulating substrate specificity. Also, for the first time, the complete C-terminal catalytic motif (244)ECGIH(248) is revealed in the active site. The catalytic residue Cys245 is ideally positioned for an in-line attack on the beta-sulfate of PAPS. In addition, the side chain of His248 is only 4.2 A from the Sgamma of Cys245 and may serve as a catalytic base to deprotonate the active site cysteine. A hydrophobic sequence (252)RFAQFL(257) at the end of the C-terminus may provide anchoring interactions preventing the tail from swinging away from the active site as seen in other APS/PAPS reductases.


Assuntos
Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Saccharomyces cerevisiae/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Biocatálise , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Alinhamento de Sequência
4.
J Mol Biol ; 365(3): 732-43, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17095009

RESUMO

The thermophilic chemolithotroph, Aquifex aeolicus, expresses a gene product that exhibits both ATP sulfurylase and adenosine-5'-phosphosulfate (APS) kinase activities. These enzymes are usually segregated on two separate proteins in most bacteria, fungi, and plants. The domain arrangement in the Aquifex enzyme is reminiscent of the fungal ATP sulfurylase, which contains a C-terminal domain that is homologous to APS kinase yet displays no kinase activity. Rather, in the fungal enzyme, the motif serves as a sulfurylase regulatory domain that binds the allosteric effector 3'-phosphoadenosine-5'-phosphosulfate (PAPS), the product of true APS kinase. Therefore, the Aquifex enzyme may represent an ancestral homolog of a primitive bifunctional enzyme, from which the fungal ATP sulfurylase may have evolved. In heterotrophic sulfur-assimilating organisms such as fungi, ATP sulfurylase catalyzes the first committed step in sulfate assimilation to produce APS, which is subsequently metabolized to generate all sulfur-containing biomolecules. In contrast, ATP sulfurylase in sulfur chemolithotrophs catalyzes the reverse reaction to produce ATP and sulfate from APS and pyrophosphate. Here, the 2.3 A resolution X-ray crystal structure of Aquifex ATP sulfurylase-APS kinase bifunctional enzyme is presented. The protein dimerizes through its APS kinase domain and contains ADP bound in all four active sites. Comparison of the Aquifex ATP sulfurylase active site with those from sulfate assimilators reveals similar dispositions of the bound nucleotide and nearby residues. This suggests that minor perturbations are responsible for optimizing the kinetic properties for the physiologically relevant direction. The APS kinase active-site lid adopts two distinct conformations, where one conformation is distorted by crystal contacts. Additionally, a disulfide bond is observed in one ATP-binding P-loop of the APS kinase active site. This linkage accounts for the low kinase activity of the enzyme under oxidizing conditions. The thermal stability of the Aquifex enzyme can be explained by the 43% decreased cavity volume found within the protein core.


Assuntos
Bactérias Gram-Negativas Quimiolitotróficas/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Sulfato Adenililtransferase/química , Sítios de Ligação , Cristalografia por Raios X , Estabilidade Enzimática , Temperatura Alta , Ligantes , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Homologia Estrutural de Proteína
5.
Biochemistry ; 43(14): 4356-65, 2004 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-15065880

RESUMO

Recombinant human 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthetase, isoform 1 (brain), was purified to near-homogeneity from an Escherichia coli expression system and kinetically characterized. The native enzyme, a dimer with each 71 kDa subunit containing an adenosine triphosphate (ATP) sulfurylase and an adenosine 5'-phosphosulfate (APS) kinase domain, catalyzes the overall formation of PAPS from ATP and inorganic sulfate. The protein is active as isolated, but activity is enhanced by treatment with dithiothreitol. APS kinase activity displayed the characteristic substrate inhibition by APS (K(I) of 47.9 microM at saturating MgATP). The maximum attainable activity of 0.12 micromol min(-1) (mg of protein)(-1) was observed at an APS concentration ([APS](opt)) of 15 microM. The theoretical K(m) for APS (at saturating MgATP) and the K(m) for MgATP (at [APS](opt)) were 4.2 microM and 0.14 mM, respectively. At likely cellular levels of MgATP (2.5 mM) and sulfate (0.4 mM), the overall endogenous rate of PAPS formation under optimum assay conditions was 0.09 micromol min(-1) (mg of protein)(-1). Upon addition of pure Penicillium chrysogenum APS kinase in excess, the overall rate increased to 0.47 micromol min(-1) (mg of protein)(-1). The kinetic constants of the ATP sulfurylase domain were as follows: V(max,f) = 0.77 micromol min(-1) (mg of protein)(-1), K(mA(MgATP)) = 0.15 mM, K(ia(MgATP)) = 1 mM, K(mB(sulfate)) = 0.16 mM, V(max,r) = 18.7 micromol min(-1) (mg of protein)(-1), K(mQ(APS)) = 4.8 microM, K(iq(APS)) = 18 nM, and K(mP(PPi)) = 34.6 microM. The (a) imbalance between ATP sulfurylase and APS kinase activities, (b) accumulation of APS in solution during the overall reaction, (c) rate acceleration provided by exogenous APS kinase, and (d) availability of both active sites to exogenous APS all argue against APS channeling. Molybdate, selenate, chromate ("chromium VI"), arsenate, tungstate, chlorate, and perchlorate bind to the ATP sulfurylase domain, with the first five serving as alternative substrates that promote the decomposition of ATP to AMP and PP(i). Selenate, chromate, and arsenate produce transient APX intermediates that are sufficiently long-lived to be captured and 3'-phosphorylated by APS kinase. (The putative PAPX products decompose to adenosine 3',5'-diphosphate and the original oxyanion.) Chlorate and perchlorate form dead-end E.MgATP.oxyanion complexes. Phenylalanine, reported to be an inhibitor of brain ATP sulfurylase, was without effect on PAPS synthetase isoform 1.


Assuntos
Adenosina Fosfossulfato/química , Encéfalo/enzimologia , Complexos Multienzimáticos/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Sulfato Adenililtransferase/química , Trifosfato de Adenosina/química , Arseniatos/química , Ligação Competitiva , Cromo/química , Humanos , Pirofosfatase Inorgânica/química , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/isolamento & purificação , Cinética , Peso Molecular , Molibdênio/química , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/isolamento & purificação , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Ácido Selênico , Compostos de Selênio/química , Especificidade por Substrato , Sulfato Adenililtransferase/antagonistas & inibidores , Sulfato Adenililtransferase/isolamento & purificação , Compostos de Tungstênio/química
6.
J Biol Chem ; 279(6): 4415-24, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14613928

RESUMO

ATP sulfurylase from Penicillium chrysogenum is a homohexameric enzyme that is subject to allosteric inhibition by 3'-phosphoadenosine 5'-phosphosulfate. In contrast to the wild type enzyme, recombinant ATP sulfurylase lacking the C-terminal allosteric domain was monomeric and noncooperative. All kcat values were decreased (the adenosine 5'-phosphosulfate (adenylylsulfate) (APS) synthesis reaction to 17% of the wild type value). Additionally, the Michaelis constants for MgATP and sulfate (or molybdate), the dissociation constant of E.APS, and the monovalent oxyanion dissociation constants of dead end E.MgATP.oxyanion complexes were all increased. APS release (the k6 step) was rate-limiting in the wild type enzyme. Without the C-terminal domain, the composite k5 step (isomerization of the central complex and MgPPi release) became rate-limiting. The cumulative results indicate that besides (a) serving as a receptor for the allosteric inhibitor, the C-terminal domain (b) stabilizes the hexameric structure and indirectly, individual subunits. Additionally, (c) the domain interacts with and perfects the catalytic site such that one or more steps following the formation of the binary E.MgATP and E.SO4(2-) complexes and preceding the release of MgPPi are optimized. The more negative entropy of activation of the truncated enzyme for APS synthesis is consistent with a role of the C-terminal domain in promoting the effective orientation of MgATP and sulfate at the active site.


Assuntos
Penicillium chrysogenum/enzimologia , Sulfato Adenililtransferase/química , Sulfato Adenililtransferase/metabolismo , Sítio Alostérico , Sequência de Bases , Clonagem Molecular , DNA Fúngico/genética , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Peso Molecular , Penicillium chrysogenum/genética , Fosfoadenosina Fosfossulfato/farmacologia , Estrutura Terciária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Sulfato Adenililtransferase/antagonistas & inibidores , Sulfato Adenililtransferase/genética
7.
Nat Struct Biol ; 9(12): 945-9, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12426581

RESUMO

The structure of the cooperative hexameric enzyme ATP sulfurylase from Penicillium chrysogenum bound to its allosteric inhibitor, 3'-phosphoadenosine-5'-phosphosulfate (PAPS), was determined to 2.6 A resolution. This structure represents the low substrate-affinity T-state conformation of the enzyme. Comparison with the high substrate-affinity R-state structure reveals that a large rotational rearrangement of domains occurs as a result of the R-to-T transition. The rearrangement is accompanied by the 17 A movement of a 10-residue loop out of the active site region, resulting in an open, product release-like structure of the catalytic domain. Binding of PAPS is proposed to induce the allosteric transition by destabilizing an R-state-specific salt linkage between Asp 111 in an N-terminal domain of one subunit and Arg 515 in the allosteric domain of a trans-triad subunit. Disrupting this salt linkage by site-directed mutagenesis induces cooperative inhibition behavior in the absence of an allosteric effector, confirming the role of these two residues.


Assuntos
Modelos Moleculares , Penicillium chrysogenum/enzimologia , Sulfato Adenililtransferase/química , Sulfato Adenililtransferase/metabolismo , Regulação Alostérica , Sítio Alostérico , Sítios de Ligação , Cristalografia por Raios X , Estabilidade Enzimática , Cinética , Movimento (Física) , Mutagênese Sítio-Dirigida , Fosfoadenosina Fosfossulfato/química , Fosfoadenosina Fosfossulfato/metabolismo , Estrutura Terciária de Proteína , Sulfato Adenililtransferase/genética
8.
Biochemistry ; 41(46): 13672-80, 2002 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-12427029

RESUMO

Adenosine 5'-phosphosulfate (APS) kinase catalyzes the second reaction in the two-step, ATP-dependent conversion of inorganic sulfate to 3'-phosphoadenosine 5'-phosphosulfate (PAPS). PAPS serves as the sulfuryl donor for the biosynthesis of all sulfate esters and also as a precursor of reduced sulfur biomolecules in many organisms. Previously, we determined the crystal structure of ligand-free APS kinase from the filamentous fungus, Penicillium chrysogenum [MacRae et al. (2000) Biochemistry 39, 1613-1621]. That structure contained a protease-susceptible disordered region ("mobile lid"; residues 145-170). Addition of MgADP and APS, which together promote the formation of a nonproductive "dead-end" ternary complex, protected the lid from trypsin. This report presents the 1.43 A resolution crystal structure of APS kinase with both ADP and APS bound at the active site and the 2.0 A resolution structure of the enzyme with ADP alone bound. The mobile lid is ordered in both complexes and is shown to provide part of the binding site for APS. That site is formed primarily by the highly conserved Arg 66, Arg 80, and Phe 75 from the protein core and Phe 165 from the mobile lid. The two Phe residues straddle the adenine ring of bound APS. Arg 148, a completely conserved residue, is the only residue in the mobile lid that interacts directly with bound ADP. Ser 34, located in the apex of the P-loop, hydrogen-bonds to the 3'-OH of APS, the phosphoryl transfer target. The structure of the binary E.ADP complex revealed further changes in the active site and N-terminal helix that occur upon the binding/release of (P)APS.


Assuntos
Difosfato de Adenosina/química , Adenosina Fosfossulfato/química , Penicillium chrysogenum/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Difosfato de Adenosina/metabolismo , Adenosina Fosfossulfato/metabolismo , Cristalização , Cristalografia por Raios X , Cinética , Ligantes , Modelos Moleculares , Fosfoadenosina Fosfossulfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Conformação Proteica , Dobramento de Proteína
9.
Arch Biochem Biophys ; 406(2): 275-88, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12361716

RESUMO

ATP sulfurylase from the hyperthermophilic chemolithotroph Aquifex aeolicus is a bacterial ortholog of the enzyme from filamentous fungi. (The subunit contains an adenosine 5'-phosphosulfate (APS) kinase-like, C-terminal domain.) The enzyme is highly heat stable with a half-life >1h at 90 degrees C. Steady-state kinetics are consistent with a random A-B, ordered P-Q mechanism where A=MgATP, B=SO4(2-), P=PP(i), and Q=APS. The kinetic constants suggest that the enzyme is optimized to act in the direction of ATP+sulfate formation. Chlorate is competitive with sulfate and with APS. In sulfur chemolithotrophs, ATP sulfurylase provides an efficient route for recycling PP(i) produced by biosynthetic reactions. However, the protein possesses low APS kinase activity. Consequently, it may also function to produce PAPS for sulfate ester formation or sulfate assimilation when hydrogen serves as the energy source and a reduced inorganic sulfur source is unavailable.


Assuntos
Bactérias/enzimologia , Sulfato Adenililtransferase/metabolismo , Sequência de Aminoácidos , Temperatura Alta , Cinética , Matemática , Modelos Teóricos , Dados de Sequência Molecular , Penicillium chrysogenum/enzimologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sulfato Adenililtransferase/química , Sulfato Adenililtransferase/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...