Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Lab Chip ; 24(13): 3233-3242, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38835278

RESUMO

The impact of fluid flow shear stresses, generated by the movement of blood through vasculature, on the organization and maturation of vessels is widely recognized. Nevertheless, it remains uncertain whether external fluid flows outside of the vasculature in the surrounding tissue can similarly play a role in governing these processes. In this research, we introduce an innovative technique called superfusion-induced vascular steering (SIVS). SIVS involves the controlled imposition of external fluid flow patterns onto the vascularized chick chorioallantoic membrane (CAM), allowing us to observe how this impacts the organization of vascular networks. To investigate the concept of SIVS, we conducted superfusion experiments on the intact chick CAM cultured within an engineered eggshell system, using phosphate buffered saline (PBS). To capture and analyze the effects of superfusion, we employed a custom-built microscopy setup, enabling us to image both superfused and non-superfused regions within the developing CAM. This study provides valuable insights into the practical application of fluid superfusion within an in vivo context, shedding light on its significance for understanding tissue development and manipulation in an engineering setting.


Assuntos
Galinhas , Membrana Corioalantoide , Animais , Membrana Corioalantoide/metabolismo , Membrana Corioalantoide/irrigação sanguínea , Embrião de Galinha
2.
BJUI Compass ; 5(4): 439-446, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38633824

RESUMO

Objective: The objective of this study is to assess the impact of overnight environmental conditions on erectile penile temperature within a controlled setting, with the aim of investigating the feasibility of using temperature measurements for nocturnal erection detection in erectile dysfunction diagnostics. Subjects/patients and methods: We conducted a proof-of-concept study involving 10 healthy male participants aged 20 to 25. The study was carried out at the Department of Urology, St. Antonius Ziekenhuis, the Netherlands. Penile temperature thermistor measurements were taken during visually aroused erections of participants in naked state and in simulated overnight condition (underwear and blankets). Main outcome variables were peak and baseline temperature during erectile periods. To minimize the impact of differences in erectile strength and duration between consecutive measurements, we applied randomization to the order of the environmental conditions. Results: We observed a significant increase in penile temperature during erection in both the naked (p < 0.01) and simulated overnight condition (p < 0.01). The mean temperature increase was 1.70 and 0.67°C, respectively. While penile temperature returned to baseline immediately after naked erections, the 'Staying Hot effect' was noted in the simulated overnight condition measurements, where the temperature remained elevated at peak temperature for the entire 30-min period following the erection. Conclusions: The findings from this study indicate that the penile temperature not only significantly increases during naked sexual arousal but is also detectable under simulated overnight conditions. This underscores the potential of using temperature measurements for nocturnal erection detection, representing a crucial initial step in developing a modernized, non-invasive sensor system for ambulatory erectile dysfunction diagnostics. Further research, including an overnight study, is needed to gain insights into the feasibility of utilizing penile temperature measurements for nocturnal erection detection and to assess the impact of the 'Staying Hot effect' on subsequent erection detection.

3.
Lab Chip ; 24(5): 1121-1134, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38165817

RESUMO

Many different epithelial and endothelial barriers in the human body ensure the proper functioning of our organs by controlling which substances can pass from one side to another. In recent years, organs-on-chips (OoC) have become a popular tool to study such barriers in vitro. To assess the proper functioning of these barriers, we can measure the transendothelial electrical resistance (TEER) which indicates how easily ions can cross the cell layer when a current is applied between electrodes on either side. TEER measurements are a convenient method to quantify the barrier properties since it is a non-invasive and label-free technique. Direct integration of electrodes for TEER measurements into OoC allows for continuous monitoring of the barrier, and fixed integration of the electrodes improves the reproducibility of the measurements. In this review, we will give an overview of different electrode and channel designs that have been used to measure the TEER in OoC. After giving some insight into why biological barriers are an important field of study, we will explain the theory and practice behind measuring the TEER in in vitro systems. Next, this review gives an overview of the state of the art in the field of integrated electrodes for TEER measurements in OoC, with a special focus on alternative chip and electrode designs. Finally, we outline some of the remaining challenges and provide some suggestions on how to overcome these challenges.


Assuntos
Impedância Elétrica , Humanos , Reprodutibilidade dos Testes , Endotélio , Eletrodos
4.
Bioeng Transl Med ; 8(3): e10513, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206226

RESUMO

The high rate of drug withdrawal from the market due to cardiovascular toxicity or lack of efficacy, the economic burden, and extremely long time before a compound reaches the market, have increased the relevance of human in vitro models like human (patient-derived) pluripotent stem cell (hPSC)-derived engineered heart tissues (EHTs) for the evaluation of the efficacy and toxicity of compounds at the early phase in the drug development pipeline. Consequently, the EHT contractile properties are highly relevant parameters for the analysis of cardiotoxicity, disease phenotype, and longitudinal measurements of cardiac function over time. In this study, we developed and validated the software HAARTA (Highly Accurate, Automatic and Robust Tracking Algorithm), which automatically analyzes contractile properties of EHTs by segmenting and tracking brightfield videos, using deep learning and template matching with sub-pixel precision. We demonstrate the robustness, accuracy, and computational efficiency of the software by comparing it to the state-of-the-art method (MUSCLEMOTION), and by testing it with a data set of EHTs from three different hPSC lines. HAARTA will facilitate standardized analysis of contractile properties of EHTs, which will be beneficial for in vitro drug screening and longitudinal measurements of cardiac function.

5.
Sci Adv ; 9(6): eadf5509, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36753543

RESUMO

Endotoxin is a deadly pyrogen, rendering it crucial to monitor with high accuracy and efficiency. However, current endotoxin detection relies on multistep processes that are labor-intensive, time-consuming, and unsustainable. Here, we report an aptamer-based biosensor for the real-time optical detection of endotoxin. The endotoxin sensor exploits the distance-dependent scattering of gold nanoparticles (AuNPs) coupled to a gold nanofilm. This is enabled by the conformational changes of an endotoxin-specific aptamer upon target binding. The sensor can be used in an ensemble mode and single-particle mode under dark-field illumination. In the ensemble mode, the sensor is coupled with a microspectrometer and exhibits high specificity, reliability (i.e., linear concentration to signal profile in logarithmic scale), and reusability for repeated endotoxin measurements. Individual endotoxins can be detected by monitoring the color of single AuNPs via a color camera, achieving single-molecule resolution. This platform can potentially advance endotoxin detection to safeguard medical, food, and pharmaceutical products.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Endotoxinas , Ouro/química , Reprodutibilidade dos Testes , Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química , Limite de Detecção
6.
ACS Appl Mater Interfaces ; 14(36): 40579-40589, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36052432

RESUMO

Using the biomarker hypermethylated DNA (hmDNA) for cancer detection requires a pretreatment to isolate or concentrate hmDNA from nonmethylated DNA. Affinity chromatography using a methyl binding domain-2 (MBD2) protein can be used, but the relatively low enrichment selectivity of MBD2 limits its clinical applicability. Here, we developed a superselective, multivalent, MBD2-coated platform to improve the selectivity of hmDNA enrichment. The multivalent platform employs control over the MBD2 surface receptor density, which is shown to strongly affect the binding of DNA with varying degrees of methylation, improving both the selectivity and the affinity of DNAs with higher numbers of methylation sites. Histidine-10-tagged MBD2 was immobilized on gold surfaces with receptor density control by tuning the amount of nickel nitrilotriacetic acid (NiNTA)-functionalized thiols in a thiol-based self-assembled monolayer. The required MBD2 surface receptor densities for DNA surface binding decreases for DNA with higher degrees of methylation. Both higher degrees of superselectivity and surface coverages were observed upon DNA binding at increasing methylation levels. Adopting the findings of this study into hmDNA enrichment of clinical samples has the potential to become more selective and sensitive than current MBD2-based methods and, therefore, to improve cancer diagnostics.


Assuntos
Metilação de DNA , Neoplasias , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Neoplasias/genética , Regiões Promotoras Genéticas
7.
Biosensors (Basel) ; 12(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36140064

RESUMO

Microfluidics and lab-on-chip technologies have been used in a wide range of biomedical applications. They are known as versatile, rapid, and low-cost alternatives for expensive equipment and time-intensive processing. The veterinary industry and human fertility clinics could greatly benefit from label-free and standardized methods for semen analysis. We developed a tool to determine the acrosome integrity of spermatozoa using microfluidic impedance cytometry. Spermatozoa from boars were treated with the calcium ionophore A23187 to induce acrosome reaction. The magnitude, phase and opacity of individual treated and non-treated (control) spermatozoa were analyzed and compared to conventional staining for acrosome integrity. The results show that the opacity at 19 MHz over 0.5 MHz is associated with acrosome integrity with a cut-off threshold at 0.86 (sensitivity 98%, specificity 97%). In short, we have demonstrated that acrosome integrity can be determined using opacity, illustrating that microfluidic impedance cytometers have the potential to become a versatile and efficient alternative in semen analysis and for fertility treatments in the veterinary industry and human fertility clinics.


Assuntos
Acrossomo , Microfluídica , Animais , Calcimicina/farmacologia , Ionóforos de Cálcio , Impedância Elétrica , Humanos , Masculino , Espermatozoides , Suínos
8.
Microsyst Nanoeng ; 8: 54, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615464

RESUMO

Integrated valves enable automated control in microfluidic systems, as they can be applied for mixing, pumping and compartmentalization purposes. Such automation would be highly valuable for applications in organ-on-chip (OoC) systems. However, OoC systems typically have channel dimensions in the range of hundreds of micrometers, which is an order of magnitude larger than those of typical microfluidic valves. The most-used fabrication process for integrated, normally open polydimethylsiloxane (PDMS) valves requires a reflow photoresist that limits the achievable channel height. In addition, the low stroke volumes of these valves make it challenging to achieve flow rates of microliters per minute, which are typically required in OoC systems. Herein, we present a mechanical 'macrovalve' fabricated by multilayer soft lithography using micromilled direct molds. We demonstrate that these valves can close off rounded channels of up to 700 µm high and 1000 µm wide. Furthermore, we used these macrovalves to create a peristaltic pump with a pumping rate of up to 48 µL/min and a mixing and metering device that can achieve the complete mixing of a volume of 6.4 µL within only 17 s. An initial cell culture experiment demonstrated that a device with integrated macrovalves is biocompatible and allows the cell culture of endothelial cells over multiple days under continuous perfusion and automated medium refreshment.

9.
PLoS One ; 17(4): e0266834, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35421132

RESUMO

The use of Engineered Heart Tissues (EHT) as in vitro model for disease modeling and drug screening has increased, as they provide important insight into the genetic mechanisms, cardiac toxicity or drug responses. Consequently, this has highlighted the need for a standardized, unbiased, robust and automatic way to analyze hallmark physiological features of EHTs. In this study we described and validated a standalone application to analyze physiological features of EHTs in an automatic, robust, and unbiased way, using low computational time. The standalone application "EHT Analysis" contains two analysis modes (automatic and manual) to analyzes the contractile properties and the contraction kinetics of EHTs from high speed bright field videos. As output data, the graphs of displacement, contraction force and contraction kinetics per file will be generated together with the raw data. Additionally, it also generates a summary file containing all the data from the analyzed files, which facilitates and speeds up the post analysis. From our study we highlight the importance of analyzing the axial stress which is the force per surface area (µN/mm2). This allows to have a readout overtime of tissue compaction, axial stress and leave the option to calculate at the end point of an experiment the physiological cross-section area (PSCA). We demonstrated the utility of this tool by analyzing contractile properties and compaction over time of EHTs made out of a double reporter human pluripotent stem cell (hPSC) line (NKX2.5EGFP/+-COUP-TFIImCherry/+) and different ratios of human adult cardiac fibroblasts (HCF). Our standalone application "EHT Analysis" can be applied for different studies where the physiological features of EHTs needs to be analyzed under the effect of a drug compound or in a disease model.


Assuntos
Contração Miocárdica , Engenharia Tecidual , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Coração/fisiologia , Humanos , Miócitos Cardíacos , Engenharia Tecidual/métodos
10.
J Pers Med ; 12(2)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35207702

RESUMO

Cardiomyocytes derived from human pluripotent stem cells (hPSC-CMs) hold a great potential as human in vitro models for studying heart disease and for drug safety screening. Nevertheless, their associated immaturity relative to the adult myocardium limits their utility in cardiac research. In this study, we describe the development of a platform for generating three-dimensional engineered heart tissues (EHTs) from hPSC-CMs for the measurement of force while under mechanical and electrical stimulation. The modular and versatile EHT platform presented here allows for the formation of three tissues per well in a 12-well plate format, resulting in 36 tissues per plate. We compared the functional performance of EHTs and their histology in three different media and demonstrated that tissues cultured and maintained in maturation medium, containing triiodothyronine (T3), dexamethasone, and insulin-like growth factor-1 (TDI), resulted in a higher force of contraction, sarcomeric organization and alignment, and a higher and lower inotropic response to isoproterenol and nifedipine, respectively. Moreover, in this study, we highlight the importance of integrating a serum-free maturation medium in the EHT platform, making it a suitable tool for cardiovascular research, disease modeling, and preclinical drug testing.

11.
ACS Sens ; 6(12): 4297-4303, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34851614

RESUMO

The need for measurements of multiple biomarkers simultaneously at subnanomolar concentrations asks for the development of new sensors with high sensitivity, specificity, precision, and accuracy. Currently, multiplexed sensing in single molecule sensors increases the complexity of the system in terms of reagents and sample read-out. In this letter, we propose a novel approach to multiplex hairpin-based single-DNA molecule sensors, which overcomes the limitations of the present approaches for multiplexing. By target-dependent ssDNA hairpin design, we can create DNA tethers that have distinct tether dynamics upon target binding. Our numerical model shows that by changing the stem length of the ssDNA hairpin, significantly different dynamic tether behavior will be observed. By exploiting the distance-dependent coupling of AuNPs to gold films, we can probe this dynamic behavior along the z-axis using a simple laser equipped microscope.


Assuntos
Ouro , Nanopartículas Metálicas , DNA/genética , DNA de Cadeia Simples , Nanotecnologia
12.
Biosens Bioelectron ; 194: 113624, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34534948

RESUMO

The excellent specificity and selectivity of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/associated nuclease (Cas) is determined by CRISPR RNA's (crRNA's) interchangeable spacer sequence, as well as the position and number of mismatches between target sequence and the crRNA sequence. Some diseases are characterized by epigenetic alterations rather than nucleotide changes, and are therefore unsuitable for CRISPR-assisted sensing methods. Here we demonstrate an in vitro diagnostic tool to discriminate single CpG site methylation in DNA by the use of methylation-sensitive restriction enzymes (MSREs) followed by Cas12a-assisted sensing. Non-methylated sequences are digested by MSREs, resulting in fragmentation of the target sequence that influences the R-loop formation between crRNA and target DNA. We show that fragment size, fragmentation position and number of fragments influence the subsequent collateral trans-cleavage activity towards single stranded DNA (ssDNA), enabling deducting the methylation position from the cleavage activity. Utilizing MSREs in combination with Cas12a, single CpG site methylation levels of a cancer gene are determined. The modularity of both Cas12a and MSREs provides a high level of versatility to the Cas12a-MSRE combined sensing method, which opens the possibility to easily and rapidly study single CpG methylation sites for disease detection.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Metilação de DNA , Proteínas de Bactérias , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas/genética , Ilhas de CpG , Clivagem do DNA , Endodesoxirribonucleases , Endonucleases/metabolismo
13.
ACS Nano ; 15(6): 9299-9327, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34028246

RESUMO

Photonic crystals (PhCs) display photonic stop bands (PSBs) and at the edges of these PSBs transport light with reduced velocity, enabling the PhCs to confine and manipulate incident light with enhanced light-matter interaction. Intense research has been devoted to leveraging the optical properties of PhCs for the development of optical sensors for bioassays, diagnosis, and environmental monitoring. These applications have furthermore benefited from the inherently large surface area of PhCs, giving rise to high analyte adsorption and the wide range of options for structural variations of the PhCs leading to enhanced light-matter interaction. Here, we focus on bottom-up assembled PhCs and review the significant advances that have been made in their use as label-free sensors. We describe their potential for point-of-care devices and in the review include their structural design, constituent materials, fabrication strategy, and sensing working principles. We thereby classify them according to five sensing principles: sensing of refractive index variations, sensing by lattice spacing variations, enhanced fluorescence spectroscopy, surface-enhanced Raman spectroscopy, and configuration transitions.


Assuntos
Óptica e Fotônica , Fótons , Refratometria , Análise Espectral Raman
14.
Lab Chip ; 21(10): 2040-2049, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33861228

RESUMO

Transepithelial/transendothelial electrical resistance (TEER) measurements can be applied in organ-on-chips (OoCs) to estimate the barrier properties of a tissue or cell layer in a continuous, non-invasive, and label-free manner. Assessing the barrier integrity in in vitro models is valuable for studying and developing barrier targeting drugs. Several systems for measuring the TEER have been shown, but each of them having their own drawbacks. This article presents a cleanroom-free fabrication method for the integration of platinum electrodes in a polydimethylsiloxane OoC, allowing the real-time assessment of the barrier function by employing impedance spectroscopy. The proposed method and electrode arrangement allow visual inspection of the cells cultured in the device at the site of the electrodes, and multiplexing of both the electrodes in one OoC and the number of OoCs in one device. The effectiveness of our system is demonstrated by lining the OoC with intestinal epithelial cells, creating a gut-on-chip, where we monitored the formation, as well as the disruption and recovery of the cell barrier during a 21 day culture period. The application is further expanded by creating a blood-brain-barrier, to show that the proposed fabrication method can be applied to monitor the barrier formation in the OoC for different types of biological barriers.


Assuntos
Espectroscopia Dielétrica , Dispositivos Lab-On-A-Chip , Impedância Elétrica , Eletrodos , Células Epiteliais
15.
Biomicrofluidics ; 14(4): 044111, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32774586

RESUMO

The use of microfluidics in artificial reproductive technologies for manipulation or assessment of spermatozoa is unique in the sense that it is not always an end point measurement and the sample may be used afterward. During microfluidic processing, spermatozoa are exposed to shear stress, which may harm viability and functioning of spermatozoa. The shear stresses during general microfluidic processing steps were calculated and compared to estimated shear stresses during ejaculation. The viability of boar and bull spermatozoa after microfluidic processing was studied and compared to the typical handling method (centrifugation) and to a control (the sample in a tube at the same temperature). The boar spermatozoa showed a small but significant decrease in viability of 6% after microfluidic handling. Bull spermatozoa proved to be less susceptible to shear stress and were not significantly affected by microfluidic processing. These data indicate that the impact of microfluidic processing on the viability of boar and bull spermatozoa is less than the literature values reported for flow cytometry and comparable to the impact of centrifugation.

16.
Biosens Bioelectron ; 166: 112445, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758911

RESUMO

With the trend of moving molecular tests from clinical laboratories to on-site testing, there is a need for nucleic acid based diagnostic tools combining the sensitivity, specificity and flexibility of established diagnostics with the ease, cost effectiveness and speed of isothermal amplification and detection methods. A promising new nucleic acid detection method is Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated nuclease (Cas)-based sensing. In this method Cas effector proteins are used as highly specific sequence recognition elements that can be combined with many different read-out methods for on-site point-of-care testing. This review covers the technical aspects of integrating CRISPR/Cas technology in miniaturized sensors for analysis on-site. We start with a short introduction to CRISPR/Cas systems and the different effector proteins and continue with reviewing the recent developments of integrating CRISPR sensing in miniaturized sensors for point-of-care applications. Finally, we discuss the challenges of point-of-care CRISPR sensing and describe future research perspectives.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Ácidos Nucleicos/genética , Sistemas Automatizados de Assistência Junto ao Leito
17.
ACS Appl Mater Interfaces ; 12(33): 37657-37669, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32814417

RESUMO

Hierarchical plasmonic-photonic microspheres (PPMs) with high controllability in their structures and optical properties have been explored toward surface-enhanced Raman spectroscopy. The PPMs consist of gold nanocrystal (AuNC) arrays (3rd-tier) anchored on a hexagonal nanopattern (2nd-tier) assembled from silica nanoparticles (SiO2NPs) where the uniform microsphere backbone is termed the 1st-tier. The PPMs sustain both photonic stop band (PSB) properties, resulting from periodic SiO2NP arrangements of the 2nd-tier, and a surface plasmon resonance (SPR), resulting from AuNC arrays of the 3rd-tier. Thanks to the synergistic effects of the photonic crystal (PC) structure and the AuNC array, the electromagnetic (EM) field in such a multiscale composite structure can tremendously be enhanced at certain wavelengths. These effects are demonstrated by experimentally evaluating the Raman enhancement of benzenethiol (BT) as a probe molecule and are confirmed via numerical simulations. We achieve a maximum SERS enhancement factor of up to ∼108 when the resonances are tailored to coincide with the excitation wavelength by suitable structural modifications.

18.
Small ; 16(24): e2001026, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32402146

RESUMO

A robust and facile method has been developed to obtain directional growth of silica nanowires (SiO2 NWs) by regulating mass transport of silicon monoxide (SiO) vapor. SiO2 NWs are grown by vapor-liquid-solid (VLS) process on a surface of gold-covered spherical photonic crystals (SPCs) annealed at high temperature in an inert gas atmosphere in the vicinity of a SiO source. The SPCs are prepared from droplet confined colloidal self-assembly. SiO2 NW morphology is governed by diffusion-reaction process of SiO vapor, whereby directional growth of SiO2 NWs toward the low SiO concentration is obtained at locations with a high SiO concentration gradient, while random growth is observed at locations with a low SiO concentration gradient. Growth of NWs parallel to the supporting substrate surface is of great importance for various applications, and this is the first demonstration of surface-parallel growth by controlling mass transport. This controllable NW morphology enables production of SPCs covered with a large number of NWs, showing multilevel micro-nano feature and high specific surface area for potential applications in superwetting surfaces, oil/water separation, microreactors, and scaffolds. In addition, the controllable photonic stop band properties of this hybrid structure of SPCs enable the potential applications in photocatalysis, sensing, and light harvesting.

19.
Lab Chip ; 20(12): 2209-2217, 2020 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-32432628

RESUMO

Lab-on-chip electrokinetic focusing and separation techniques are widely used in several scientific fields. In a number of cases, these techniques have been combined with a selective analyte extraction for off-chip analysis. Nevertheless, the usability of the extracts is limited by diffusion which reduces the separation resolution. In this paper we propose the integration of a droplet generator capable of continuous or on-demand generation and extraction of electrokinetically separated and focused analytes. We demonstrate the selective droplet extraction of model analytes separated and concentrated via ion concentration polarization focusing (ICPF). We report extracted droplets with 1000-fold increased concentration. Importantly, the droplet generator does not interrupt the ICPF process making it suitable for integration with the majority of electrokinetic separation techniques.

20.
Cancers (Basel) ; 12(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252299

RESUMO

DNA methylation analysis of full void urine and urine pellet seems promising for bladder cancer (BC) detection and surveillance. Urinary cell-free DNA from urine supernatant is now gaining interest for other molecular tests in BC. This study aims to evaluate which urine fraction is preferred for BC diagnosis using methylation markers: full void urine, urine pellet or supernatant. Methylation levels of nine markers were determined in the three urine fractions and correlated with their respective tumor tissues in BC patients and compared to controls. For all markers and marker panel GHSR/MAL, diagnostic performance was determined by calculating the area under the curve (AUC) of the respective receiver operating characteristic curves. For most of the markers, there was a significant correlation between the methylation levels in each of the urine fractions and the matched tumor tissues. Urine pellet was the most representative fraction. Generally, AUCs for BC diagnosis were comparable among the fractions. The highest AUC was obtained for GHSR/MAL in urine pellet: AUC 0.87 (95% confidence interval: 0.73-1.00), corresponding to a sensitivity of 78.6% and a specificity of 91.7%. Our results demonstrate that cellular and cell-free DNA in urine can be used for BC diagnosis by urinary methylation analysis. Based on our comparative analysis and for practical reasons, we recommend the use of urine pellet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...