Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077457

RESUMO

Hyperactive poly(ADP-ribose) polymerases (PARP) promote ischemic heart failure (IHF) after myocardial infarction (MI). However, the role of tankyrases (TNKSs), members of the PARP family, in pathogenesis of IHF remains unknown. We investigated the expression and activation of TNKSs in myocardium of IHF patients and MI rats. We explored the cardioprotective effect of TNKS inhibition in an isoproterenol-induced zebrafish HF model. In IHF patients, we observed elevated TNKS2 and DICER and concomitant upregulation of miR-34a-5p and miR-21-5p in non-infarcted myocardium. In a rat MI model, we found augmented TNKS2 and DICER in the border and infarct areas at the early stage of post-MI. We also observed consistently increased TNKS1 in the border and infarct areas and destabilized AXIN in the infarct area from 4 weeks onward, which in turn triggered Wnt/ß-catenin signaling. In an isoproterenol-induced HF zebrafish model, inhibition of TNKS activity with XAV939, a TNKSs-specific inhibitor, protected against ventricular dilatation and cardiac dysfunction and abrogated overactivation of Wnt/ß-catenin signaling and dysregulation of miR-34a-5p induced by isoproterenol. Our study unravels a potential role of TNKSs in the pathogenesis of IHF by regulating Wnt/ß-catenin signaling and possibly modulating miRNAs and highlights the pharmacotherapeutic potential of TNKS inhibition for prevention of IHF.


Assuntos
Insuficiência Cardíaca , MicroRNAs , Tanquirases , Animais , Dilatação , Insuficiência Cardíaca/tratamento farmacológico , Isoproterenol/farmacologia , MicroRNAs/genética , Ratos , Tanquirases/antagonistas & inibidores , Tanquirases/metabolismo , Via de Sinalização Wnt , Peixe-Zebra/metabolismo , beta Catenina/metabolismo
2.
Front Cardiovasc Med ; 9: 919355, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783854

RESUMO

Objectives: Impaired protein kinase signaling is a hallmark of ischemic heart disease (IHD). Inadequate understanding of the pathological mechanisms limits the development of therapeutic approaches. We aimed to identify the key cardiac kinases and signaling pathways in patients with IHD with an effort to discover potential therapeutic strategies. Methods: Cardiac kinase activity in IHD left ventricle (LV) and the related signaling pathways were investigated by kinomics, transcriptomics, proteomics, and integrated multi-omics approach. Results: Protein kinase A (PKA) and protein kinase G (PKG) ranked on top in the activity shift among the cardiac kinases. In the IHD LVs, PKA activity decreased markedly compared with that of controls (62% reduction, p = 0.0034), whereas PKG activity remained stable, although the amount of PKG protein increased remarkably (65%, p = 0.003). mRNA levels of adenylate cyclases (ADCY 1, 3, 5, 9) and cAMP-hydrolysing phosphodiesterases (PDE4A, PDE4D) decreased significantly, although no statistically significant alterations were observed in that of PKGs (PRKG1 and PRKG2) and guanylate cyclases (GUCYs). The gene expression of natriuretic peptide CNP decreased remarkably, whereas those of BNP, ANP, and neprilysin increased significantly in the IHD LVs. Proteomics analysis revealed a significant reduction in protein levels of "Energy metabolism" and "Muscle contraction" in the patients. Multi-omics integration highlighted intracellular signaling by second messengers as the top enriched Reactome pathway. Conclusion: The deficiency in cAMP/PKA signaling pathway is strongly implicated in the pathogenesis of IHD. Natriuretic peptide CNP could be a potential therapeutic target for the modulation of cGMP/PKG signaling.

3.
J Mol Cell Cardiol ; 165: 130-140, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34973276

RESUMO

BACKGROUND: Cardiac fibrosis stiffens the ventricular wall, predisposes to cardiac arrhythmias and contributes to the development of heart failure. In the present study, our aim was to identify novel miRNAs that regulate the development of cardiac fibrosis and could serve as potential therapeutic targets for myocardial fibrosis. METHODS AND RESULTS: Analysis for cardiac samples from sudden cardiac death victims with extensive myocardial fibrosis as the primary cause of death identified dysregulation of miR-185-5p. Analysis of resident cardiac cells from mice subjected to experimental cardiac fibrosis model showed induction of miR-185-5p expression specifically in cardiac fibroblasts. In vitro, augmenting miR-185-5p induced collagen production and profibrotic activation in cardiac fibroblasts, whereas inhibition of miR-185-5p attenuated collagen production. In vivo, targeting miR-185-5p in mice abolished pressure overload induced cardiac interstitial fibrosis. Mechanistically, miR-185-5p targets apelin receptor and inhibits the anti-fibrotic effects of apelin. Finally, analysis of left ventricular tissue from patients with severe cardiomyopathy showed an increase in miR-185-5p expression together with pro-fibrotic TGF-ß1 and collagen I. CONCLUSIONS: Our data show that miR-185-5p targets apelin receptor and promotes myocardial fibrosis.


Assuntos
Cardiomiopatias , MicroRNAs , Animais , Receptores de Apelina/metabolismo , Cardiomiopatias/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibrose , Humanos , Camundongos , MicroRNAs/metabolismo
4.
Int J Mol Sci ; 21(21)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114482

RESUMO

Cardiogenic shock (CS) is a life-threatening emergency. New biomarkers are needed in order to detect patients at greater risk of adverse outcome. Our aim was to assess the characteristics of miR-21-5p, miR-122-5p, and miR-320a-3p in CS and evaluate the value of their expression levels in risk prediction. Circulating levels of miR-21-5p, miR-122-5p, and miR-320a-3p were measured from serial plasma samples of 179 patients during the first 5-10 days after detection of CS, derived from the CardShock study. Acute coronary syndrome was the most common cause (80%) of CS. Baseline (0 h) levels of miR-21-5p, miR-122-5p, and miR-320a-3p were all significantly elevated in nonsurvivors compared to survivors (p < 0.05 for all). Above median levels at 0h of each miRNA were each significantly associated with higher lactate and alanine aminotransferase levels and decreased glomerular filtration rates. After adjusting the multivariate regression analysis with established CS risk factors, miR-21-5p and miR-320a-3p levels above median at 0 h were independently associated with 90-day all-cause mortality (adjusted hazard ratio 1.8 (95% confidence interval 1.1-3.0), p = 0.018; adjusted hazard ratio 1.9 (95% confidence interval 1.2-3.2), p = 0.009, respectively). In conclusion, circulating plasma levels of miR-21-5p, miR-122-5p, and miR-320a-3p at baseline were all elevated in nonsurvivors of CS and associated with markers of hypoperfusion. Above median levels of miR-21-5p and miR-320a-3p at baseline appear to independently predict 90-day all-cause mortality. This indicates the potential of miRNAs as biomarkers for risk assessment in cardiogenic shock.


Assuntos
Síndrome Coronariana Aguda/epidemiologia , MicroRNAs/sangue , Choque Cardiogênico/mortalidade , Síndrome Coronariana Aguda/complicações , Síndrome Coronariana Aguda/genética , Síndrome Coronariana Aguda/mortalidade , Idoso , Biomarcadores/sangue , Feminino , Estudos de Associação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Choque Cardiogênico/genética , Análise de Sobrevida , Regulação para Cima
5.
ESC Heart Fail ; 6(1): 98-102, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30472788

RESUMO

AIMS: The role of microRNAs has not been studied in cardiogenic shock. We examined the potential role of miR-423-5p level to predict mortality and associations of miR-423-5p with prognostic markers in cardiogenic shock. METHODS AND RESULTS: We conducted a prospective multinational observational study enrolling consecutive cardiogenic shock patients. Blood samples were available for 179 patients at baseline to determine levels of miR-423-5p and other biomarkers. Patients were treated according to local practice. Main outcome was 90 day all-cause mortality. Median miR-423-5p level was significantly higher in 90 day non-survivors [median 0.008 arbitrary units (AU) (interquartile range 0.003-0.017) vs. 0.004 AU (0.002-0.009), P = 0.003]. miR-423-5p level above median was associated with higher lactate (median 3.7 vs. 2.4 mmol/L, P = 0.001) and alanine aminotransferase levels (median 68 vs. 35 IU/L, P < 0.001) as well as lower cardiac index (1.8 vs. 2.4, P = 0.04) and estimated glomerular filtration rate (56 vs. 70 mL/min/1.73 m2 , P = 0.002). In Cox regression analysis, miR-423-5p level above median was associated with 90 day all-cause mortality independently of established risk factors of cardiogenic shock [adjusted hazard ratio 1.9 (95% confidence interval 1.2-3.2), P = 0.01]. CONCLUSIONS: In cardiogenic shock patients, above median level of miR-423-5p at baseline is associated with markers of hypoperfusion and seems to independently predict 90 day all-cause mortality.


Assuntos
MicroRNAs/sangue , Medição de Risco/métodos , Choque Cardiogênico/sangue , Idoso , Biomarcadores/sangue , Causas de Morte/tendências , Feminino , Finlândia/epidemiologia , Seguimentos , Humanos , Masculino , Estudos Prospectivos , Fatores de Risco , Choque Cardiogênico/mortalidade , Taxa de Sobrevida/tendências , Fatores de Tempo
6.
Eur J Pharmacol ; 818: 57-66, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29055786

RESUMO

Carbon monoxide (CO), produced by heme oxygenase-1 (HO-1), is an endogenous paracrine factor involved in the regulation of cardiovascular structure and function. We studied the effects of a synthetic CO releasing molecule (CORM-3) on cardiac recovery and myocardial microRNA expression after myocardial infarction (MI). Male Wistar rats with MI (n = 75) or sham-operated controls (n = 75) were treated from day 4 to day 14 after MI either with synthetic CORM-3 or with inactive iCORM and killed 2, 4 or 8 weeks post-MI. Infarct size, vascular and capillary densities, the amount of cardiomyocytes in the infarct area, and cardiomyocyte proliferation and apoptosis were determined. PCR was used for microRNA and mRNA quantification, western blotting to evaluate protein expression and echocardiography to assess cardiac structure and function. CORM-3 treatment increased vascular density (P< 0.05 vs. iCORM) and the proportion of cardiomyocytes (P< 0.05 vs. iCORM) in the infarct area. Ejection fraction improved (P< 0.05) and left ventricular volumes decreased (P< 0.05) in CORM-3 treated MI groups compared to iCORM treatment. CORM-3 treatment decreased the amount of proliferating Ki67 positive cardiomyocytes in the infarct/border area at week 2 after MI compared to iCORM treatment, whereas the amount of apoptotic cardiomyocytes did not differ between CORM-3 and iCORM groups. Compared to iCORM treatment, CORM-3 decreased expression on miR-206 in the remote area at week 2 after MI. The CO releasing molecule CORM-3 improved structural and functional cardiac recovery after MI. Modulation of HO-1-CO axis may prove novel drug targets to facilitate cardiac recovery after myocardial injury.


Assuntos
Traumatismos Cardíacos/fisiopatologia , Coração/efeitos dos fármacos , Coração/fisiopatologia , Compostos Organometálicos/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Capilares/efeitos dos fármacos , Capilares/metabolismo , Proliferação de Células/efeitos dos fármacos , Fibrose , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/patologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Wistar
7.
J Renin Angiotensin Aldosterone Syst ; 16(1): 92-102, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23629679

RESUMO

INTRODUCTION: We studied the effects of angiotensin type 1 receptor blockade (ARB) on formation of new cardiomyocytes, neovascularization and ventricular remodelling after myocardial infarction (MI). METHODS: Male Wistar rats with MI or sham-operated controls were treated with either losartan or vehicle. Bromodeoxyuridine (BrdU) was given to identify newly formed cardiac cells. Immunohistochemical analysis was used to quantify proliferative and apoptotic cardiomyocytes, vascular structures and c-Kit+ stem/progenitor cells, western blotting to evaluate gene expression, and planimetry and echocardiography to assess cardiac structure and function. RESULTS: The number of BrdU+ cardiomyocytes increased similarly in the vehicle and losartan treated MI groups. The number of apoptotic or proliferating cardiomyocytes did not differ between losartan and vehicle treated rats. Losartan induced an increase in capillary and BrdU+ vascular densities in the infarct border zone. Losartan treatment completely prevented post-MI cardiac hypertrophy. In the non-infarcted myocardium the amount of all BrdU+ cells (including non-cardiomyocyte cells) was highest in the vehicle treated MI rats at week 4. CONCLUSIONS: The number of newly formed cardiomyocytes increased after MI. Angiotensin II blockade neither stimulated nor prevented cardiomyocyte regeneration. ARB treatment increased vascular densities in the infarct border zone and modulated remodelling of the non-infarcted myocardium preventing effectively post-MI cardiac hypertrophy.


Assuntos
Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Animais , Antimetabólitos/farmacologia , Apoptose/efeitos dos fármacos , Peso Corporal , Bromodesoxiuridina/farmacologia , Cardiomegalia/etiologia , Cardiomegalia/prevenção & controle , Losartan/farmacologia , Infarto do Miocárdio/diagnóstico por imagem , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Ratos , Regeneração/efeitos dos fármacos , Renina/sangue , Células-Tronco , Ultrassonografia , Fator A de Crescimento do Endotélio Vascular/biossíntese
8.
Eur J Pharmacol ; 635(1-3): 156-64, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20303947

RESUMO

Heme oxygenase-1 (HO-1), a known cytoprotective enzyme implicated also in the cell cycle regulation and angiogenesis, exerts many of its beneficial effects through carbon monoxide (CO). We studied the roles of HO-1 and CO in cardiac regeneration after myocardial infarction. Prior to coronary artery ligation, male Wistar rats were given either cobolt protoporphyrin IX to induce HO-1 or CO-donor methylene chloride. Cardiac regeneration was assessed by immunohistochemistry and confocal microscopy. CO significantly increased the accumulation of c-kit+ stem/progenitor cells into the infarct area and induced formation of new coronary arteries by promoting a substantial differentiation of c-kit+ cells into vascular smooth muscle cells (c-kit+/GATA6+ cells). Furthermore, CO increased proliferation of cardiomyocytes in the infarct border area at 4weeks post-infarction. This suggests proliferation of newly formed cardiomyocytes derived from c-kit+ cells as 10% of c-kit+ cells expressed early cardiac marker Nkx2.5. Increased expression of hypoxia-inducible factor-1alpha (HIF-1alpha), stromal cell derived factor-1alpha (SDF-1alpha) and vascular endothelial growth factor-B (VEGF-B) were found in the infarct areas of CO-donor pretreated hearts suggesting that these factors potentially promoted the migration of c-kit+ cells into the infarct area and subsequent vasculogenesis and myocardial regeneration by CO. HO-1 increased both capillary and vascular densities, while only a small increase of c-kit+ cells was found. HO-1 upregulated SDF-1alpha, but did not have effect on HIF-1alpha and VEGF-B. In conclusion, HO-1 and CO have differential roles and mechanisms of action in cardiac regeneration. Modulation of the HO-1/CO axis may provide a novel tool for the repair of cardiac injury.


Assuntos
Monóxido de Carbono/metabolismo , Quimiocina CXCL12/metabolismo , Heme Oxigenase-1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Infarto do Miocárdio/fisiopatologia , Neovascularização Fisiológica , Fator B de Crescimento do Endotélio Vascular/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Carboxihemoglobina/genética , Carboxihemoglobina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica , Heme Oxigenase-1/biossíntese , Heme Oxigenase-1/genética , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-kit/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...