Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (171)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34096910

RESUMO

Determination of the cardiac function is a robust endpoint analysis in animal models of cardiovascular diseases in order to characterize effects of specific treatments on the heart. Due to the feasibility of genetic manipulations the mouse has become the most common mammalian animal model to study cardiac function and to search for new potential therapeutic targets. Here we describe a protocol to determine cardiac function in vivo using pressure-volume loop measurements and analysis during basal conditions and under ß-adrenergic stimulation by intravenous infusion of increasing concentrations of isoproterenol. We provide a refined protocol including ventilation support taking into account the positive end-expiratory pressure to ameliorate negative effects during open-chest measurements, and potent analgesia (Buprenorphine) to avoid uncontrollable myocardial stress evoked by pain during the procedure. All together the detailed description of the procedure and discussion about possible pitfalls enables highly standardized and reproducible pressure-volume loop analysis, reducing the exclusion of animals from the experimental cohort by preventing possible methodological bias.


Assuntos
Adrenérgicos , Coração , Adrenérgicos/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Coração/efeitos dos fármacos , Isoproterenol/farmacologia , Camundongos , Contração Miocárdica/efeitos dos fármacos , Miocárdio
2.
Basic Res Cardiol ; 115(6): 70, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33205255

RESUMO

Transient receptor potential melastatin 4 (TRPM4) cation channels act in cardiomyocytes as a negative modulator of the L-type Ca2+ current. Ubiquitous Trpm4 deletion in mice leads to an increased ß-adrenergic inotropy in healthy mice as well as after myocardial infarction. In this study, we set out to investigate cardiac inotropy in mice with cardiomyocyte-specific Trpm4 deletion. The results guided us to investigate the relevance of TRPM4 for catecholamine-evoked Ca2+ signaling in cardiomyocytes and inotropy in vivo in TRPM4-deficient mouse models of different genetic background. Cardiac hemodynamics were investigated using pressure-volume analysis. Surprisingly, an increased ß-adrenergic inotropy was observed in global TRPM4-deficient mice on a 129SvJ genetic background, but the inotropic response was unaltered in mice with global and cardiomyocyte-specific TRPM4 deletion on the C57Bl/6N background. We found that the expression of TRPM4 proteins is about 78 ± 10% higher in wild-type mice on the 129SvJ versus C57Bl/6N background. In accordance with contractility measurements, our analysis of the intracellular Ca2+ transients revealed an increase in ISO-evoked Ca2+ rise in Trpm4-deficient cardiomyocytes of the 129SvJ strain, but not of the C57Bl/6N strain. No significant differences were observed between the two mouse strains in the expression of other regulators of cardiomyocyte Ca2+ homeostasis. We conclude that the relevance of TRPM4 for cardiac contractility depends on homeostatic TRPM4 expression levels or the genetic endowment in different mouse strains as well as on the health/disease status. Therefore, the concept of inhibiting TRPM4 channels to improve cardiac contractility needs to be carefully explored in specific strains and species and prospectively in different genetically diverse populations of patients.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPM/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Isoproterenol/farmacologia , Cinética , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Especificidade da Espécie , Canais de Cátion TRPM/deficiência , Canais de Cátion TRPM/genética , Função Ventricular Esquerda
3.
Cells ; 9(5)2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354146

RESUMO

Pathological cardiac remodeling correlates with chronic neurohumoral stimulation and abnormal Ca2+ signaling in cardiomyocytes. Store-operated calcium entry (SOCE) has been described in adult and neonatal murine cardiomyocytes, and Orai1 proteins act as crucial ion-conducting constituents of this calcium entry pathway that can be engaged not only by passive Ca2+ store depletion but also by neurohumoral stimuli such as angiotensin-II. In this study, we, therefore, analyzed the consequences of Orai1 deletion for cardiomyocyte hypertrophy in neonatal and adult cardiomyocytes as well as for other features of pathological cardiac remodeling including cardiac contractile function in vivo. Cellular hypertrophy induced by angiotensin-II in embryonic cardiomyocytes from Orai1-deficient mice was blunted in comparison to cells from litter-matched control mice. Due to lethality of mice with ubiquitous Orai1 deficiency and to selectively analyze the role of Orai1 in adult cardiomyocytes, we generated a cardiomyocyte-specific and temporally inducible Orai1 knockout mouse line (Orai1CM-KO). Analysis of cardiac contractility by pressure-volume loops under basal conditions and of cardiac histology did not reveal differences between Orai1CM-KO mice and controls. Moreover, deletion of Orai1 in cardiomyocytes in adult mice did not protect them from angiotensin-II-induced cardiac remodeling, but cardiomyocyte cross-sectional area and cardiac fibrosis were enhanced. These alterations in the absence of Orai1 go along with blunted angiotensin-II-induced upregulation of the expression of Myoz2 and a lack of rise in angiotensin-II-induced STIM1 and Orai3 expression. In contrast to embryonic cardiomyocytes, where Orai1 contributes to the development of cellular hypertrophy, the results obtained from deletion of Orai1 in the adult myocardium reveal a protective function of Orai1 against the development of angiotensin-II-induced cardiac remodeling, possibly involving signaling via Orai3/STIM1-calcineurin-NFAT related pathways.


Assuntos
Miócitos Cardíacos/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Angiotensina II/metabolismo , Angiotensinas/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Transporte/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Proteína ORAI1/fisiologia , Molécula 1 de Interação Estromal/metabolismo , Remodelação Ventricular/genética , Remodelação Ventricular/fisiologia
4.
Front Cardiovasc Med ; 6: 36, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31111037

RESUMO

Aim: Cardiac pressure-volume (PV loop) analysis under ß-adrenergic stimulation is a powerful method to simultaneously determine intrinsic cardiac function and ß-adrenergic reserve in mouse models. Despite its wide use, several key approaches of this method, which can affect murine cardiac function tremendously, have not been experimentally investigated until now. In this study, we investigate the impact of three lines of action during the complex procedure of PV loop analysis: (i) the ventilation with positive end-expiratory pressure, (ii) the time point of injecting hypertonic saline to estimate parallel-conductance, and (iii) the implications of end-systolic pressure-spikes that may arise under ß-adrenergic stimulation. Methods and Results: We performed pressure-volume analysis during ß-adrenergic stimulation in an open-chest protocol under Isoflurane/Buprenorphine anesthesia. Our analysis showed that (i) ventilation with 2 cmH2O positive end-expiratory pressure prevented exacerbation of peak inspiratory pressures subsequently protecting mice from macroscopic pulmonary bleedings. (ii) Estimations of parallel-conductance by injecting hypertonic saline prior to pressure-volume recordings induced dilated chamber dimensions as depicted by elevation of end-systolic volume (+113%), end-diastolic volume (+40%), and end-diastolic pressure (+46%). Further, using this experimental approach, the preload-independent contractility (PRSW) was significantly impaired under basal conditions (-17%) and under catecholaminergic stimulation (-14% at 8.25 ng/min Isoprenaline), the ß-adrenergic reserve was alleviated, and the incidence of ectopic beats was increased >5-fold. (iii) End-systolic pressure-spikes were observed in 26% of pressure-volume recordings under stimulation with 2.475 and 8.25 ng/min Isoprenaline, which affected the analysis of maximum pressure (+11.5%), end-diastolic volume (-8%), stroke volume (-10%), and cardiac output (-11%). Conclusions: Our results (i) demonstrate the advantages of positive end-expiratory pressure ventilation in open-chest instrumented mice, (ii) underline the perils of injecting hypertonic saline prior to pressure-volume recordings to calibrate for parallel-conductance and (iii) emphasize the necessity to be aware of the consequences of end-systolic pressure-spikes during ß-adrenergic stimulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...