Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673845

RESUMO

Ca2+ binding to the ubiquitous Ca2+ sensing protein calmodulin (CaM) activates the intermediate conductance Ca2+-activated SK4 channel. Potential hydrophilic pockets for CaM binding have been identified at the intracellular HA and HB helices in the C-terminal of SK4 from the three published cryo-EM structures of SK4. Single charge reversal substitutions at either site, significantly weakened the pull-down of SK4 by CaM wild-type (CaM), and decreased the TRAM-34 sensitive outward K+ current densities in native HEK293T cells when compared with SK4 WT measured under the same conditions. Only the doubly substituted SK4 R352D/R355D (HB helix) obliterated the CaM-mediated pull-down and thwarted outward K+ currents. However, overexpression of CaM E84K/E87K, which had been predicted to face the arginine doublet, restored the CaM-mediated pull-down of SK4 R352D/R355D and normalized its whole-cell current density. Virtual analysis of the putative salt bridges supports a unique role for the positively charged arginine doublet at the HB helix into anchoring the interaction with the negatively charged CaM glutamate 84 and 87 CaM. Our findings underscore the unique contribution of electrostatic interactions in carrying CaM binding onto SK4 and support the role of the C-terminal HB helix to the Ca2+-dependent gating process.


Assuntos
Cálcio , Calmodulina , Canais de Potássio Ativados por Cálcio de Condutância Intermediária , Ligação Proteica , Eletricidade Estática , Calmodulina/metabolismo , Calmodulina/química , Humanos , Cálcio/metabolismo , Células HEK293 , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/química , Ativação do Canal Iônico , Modelos Moleculares , Sítios de Ligação
2.
J Biol Chem ; 298(12): 102632, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273583

RESUMO

We recently reported the identification of a de novo single nucleotide variant in exon 9 of CACNA1C associated with prolonged repolarization interval. Recombinant expression of the glycine to arginine variant at position 419 produced a gain in the function of the L-type CaV1.2 channel with increased peak current density and activation gating but without significant decrease in the inactivation kinetics. We herein reveal that these properties are replicated by overexpressing calmodulin (CaM) with CaV1.2 WT and are reversed by exposure to the CaM antagonist W-13. Phosphomimetic (T79D or S81D), but not phosphoresistant (T79A or S81A), CaM surrogates reproduced the impact of CaM WT on the function of CaV1.2 WT. The increased channel activity of CaV1.2 WT following overexpression of CaM was found to arise in part from enhanced cell surface expression. In contrast, the properties of the variant remained unaffected by any of these treatments. CaV1.2 substituted with the α-helix breaking proline residue were more reluctant to open than CaV1.2 WT but were upregulated by phosphomimetic CaM surrogates. Our results indicate that (1) CaM and its phosphomimetic analogs promote a gain in the function of CaV1.2 and (2) the structural properties of the first intracellular linker of CaV1.2 contribute to its CaM-induced modulation. We conclude that the CACNA1C clinical variant mimics the increased activity associated with the upregulation of CaV1.2 by Ca2+-CaM, thus maintaining a majority of channels in a constitutively active mode that could ultimately promote ventricular arrhythmias.


Assuntos
Arritmias Cardíacas , Calmodulina , Humanos , Calmodulina/genética , Calmodulina/metabolismo , Cinética , Ligação Proteica , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo
4.
Biochim Biophys Acta Biomembr ; 1862(11): 183439, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32814116

RESUMO

Eukaryote voltage-gated Ca2+ channels of the CaV2 channel family are hetero-oligomers formed by the pore-forming CaVα1 protein assembled with auxiliary CaVα2δ and CaVß subunits. CaVß subunits are formed by a Src homology 3 (SH3) domain and a guanylate kinase (GK) domain connected through a HOOK domain. The GK domain binds a conserved cytoplasmic region of the pore-forming CaVα1 subunit referred as the "AID". Herein we explored the phylogenetic and functional relationship between CaV channel subunits in distant eukaryotic organisms by investigating the function of a MAGUK protein (XM_004990081) cloned from the choanoflagellate Salpingoeca rosetta (Sro). This MAGUK protein (Sroß) features SH3 and GK structural domains with a 25% primary sequence identity to mammalian CaVß. Recombinant expression of its cDNA with mammalian high-voltage activated Ca2+ channel CaV2.3 in mammalian HEK cells produced robust voltage-gated inward Ca2+ currents with typical activation and inactivation properties. Like CaVß, Sroß prevents fast degradation of total CaV2.3 proteins in cycloheximide assays. The three-dimensional homology model predicts an interaction between the GK domain of Sroß and the AID motif of the pore-forming CaVα1 protein. Substitution of AID residues Trp (W386A) and Tyr (Y383A) significantly impaired co-immunoprecipitation of CaV2.3 with Sroß and functional upregulation of CaV2.3 currents. Likewise, a 6-residue deletion within the GK domain of Sroß, similar to the locus found in mammalian CaVß, significantly reduced peak current density. Altogether our data demonstrate that an ancestor MAGUK protein reconstitutes the biophysical and molecular features responsible for channel upregulation by mammalian CaVß through a minimally conserved molecular interface.


Assuntos
Canais de Cálcio Tipo R/química , Proteínas de Transporte de Cátions/química , Guanilato Quinases/química , Proteínas de Protozoários/química , Substituição de Aminoácidos , Canais de Cálcio Tipo R/genética , Canais de Cálcio Tipo R/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
5.
J Biol Chem ; 292(26): 11109-11124, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28495885

RESUMO

Voltage-gated L-type CaV1.2 channels in cardiomyocytes exist as heteromeric complexes with the pore-forming CaVα1, CaVß, and CaVα2δ1 subunits. The full complement of subunits is required to reconstitute the native-like properties of L-type Ca2+ currents, but the molecular determinants responsible for the formation of the heteromeric complex are still being studied. Enzymatic treatment with phosphatidylinositol-specific phospholipase C, a phospholipase C specific for the cleavage of glycosylphosphatidylinositol (GPI)-anchored proteins, disrupted plasma membrane localization of the cardiac CaVα2δ1 prompting us to investigate deletions of its hydrophobic transmembrane domain. Patch-clamp experiments indicated that the C-terminally cleaved CaVα2δ1 proteins up-regulate CaV1.2 channels. In contrast, deleting the residues before the single hydrophobic segment (CaVα2δ1 Δ1059-1063) impaired current up-regulation. CaVα2δ1 mutants G1060I and G1061I nearly eliminated the cell-surface fluorescence of CaVα2δ1, indicated by two-color flow cytometry assays and confocal imaging, and prevented CaVα2δ1-mediated increase in peak current density and modulation of the voltage-dependent gating of CaV1.2. These impacts were specific to substitutions with isoleucine residues because functional modulation was partially preserved in CaVα2δ1 G1060A and G1061A proteins. Moreover, C-terminal fragments exhibited significantly altered mobility in denatured immunoblots of CaVα2δ1 G1060I and CaVα2δ1 G1061I, suggesting that these mutant proteins were impaired in proteolytic processing. Finally, CaVα2δ1 Δ1059-1063, but not CaVα2δ1 G1060A, failed to co-immunoprecipitate with CaV1.2. Altogether, our data support a model in which small neutral hydrophobic residues facilitate the post-translational cleavage of the CaVα2δ1 subunit at the predicted membrane interface and further suggest that preventing GPI anchoring of CaVα2δ1 averts its cell-surface expression, its interaction with CaVα1, and modulation of CaV1.2 currents.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Ativação do Canal Iônico/fisiologia , Miocárdio/metabolismo , Substituição de Aminoácidos , Animais , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/genética , Linhagem Celular , Humanos , Mutação de Sentido Incorreto , Domínios Proteicos , Coelhos
6.
J Vis Exp ; (115)2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27768059

RESUMO

Inherited or de novo mutations in cation-selective channels may lead to sudden cardiac death. Alteration in the plasma membrane trafficking of these multi-spanning transmembrane proteins, with or without change in channel gating, is often postulated to contribute significantly in this process. It has thus become critical to develop a method to quantify the change of the relative cell surface expression of cardiac ion channels on a large scale. Herein, a detailed protocol is provided to determine the relative total and cell surface expression of cardiac L-type calcium channels CaV1.2 and membrane-associated subunits in tsA-201 cells using two-color fluorescent cytometry assays. Compared with other microscopy-based or immunoblotting-based qualitative methods, flow cytometry experiments are fast, reproducible, and large-volume assays that deliver quantifiable end-points on large samples of live cells (ranging from 104 to 106 cells) with similar cellular characteristics in a single flow. Constructs were designed to constitutively express mCherry at the intracellular C-terminus (thus allowing a rapid assessment of the total protein expression) and express an extracellular-facing hemagglutinin (HA) epitope to estimate the cell surface expression of membrane proteins using an anti-HA fluorescence conjugated antibody. To avoid false negative, experiments were also conducted in permeabilized cells to confirm the accessibility and proper expression of the HA epitope. The detailed procedure provides: (1) design of tagged DNA (deoxyribonucleic acid) constructs, (2) lipid-mediated transfection of constructs in tsA-201 cells, (3) culture, harvest, and staining of non-permeabilized and permeabilized cells, and (4) acquisition and analysis of fluorescent signals. Additionally, the basic principles of flow cytometry are explained and the experimental design, including the choice of fluorophores, titration of the HA antibody and control experiments, is thoroughly discussed. This specific approach offers objective relative quantification of the total and cell surface expression of ion channels that can be extended to study ion pumps and plasma membrane transporters.


Assuntos
Canais de Cálcio Tipo L/biossíntese , Citometria de Fluxo/métodos , Miocárdio/metabolismo , Fenômenos Biofísicos , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/genética , Linhagem Celular , Membrana Celular/química , Membrana Celular/metabolismo , Citometria de Fluxo/instrumentação , Humanos , Miocárdio/química , Transporte Proteico , Transfecção
7.
J Biol Chem ; 291(9): 4826-43, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26742847

RESUMO

Alteration in the L-type current density is one aspect of the electrical remodeling observed in patients suffering from cardiac arrhythmias. Changes in channel function could result from variations in the protein biogenesis, stability, post-translational modification, and/or trafficking in any of the regulatory subunits forming cardiac L-type Ca(2+) channel complexes. CaVα2δ1 is potentially the most heavily N-glycosylated subunit in the cardiac L-type CaV1.2 channel complex. Here, we show that enzymatic removal of N-glycans produced a 50-kDa shift in the mobility of cardiac and recombinant CaVα2δ1 proteins. This change was also observed upon simultaneous mutation of the 16 Asn sites. Nonetheless, the mutation of only 6/16 sites was sufficient to significantly 1) reduce the steady-state cell surface fluorescence of CaVα2δ1 as characterized by two-color flow cytometry assays and confocal imaging; 2) decrease protein stability estimated from cycloheximide chase assays; and 3) prevent the CaVα2δ1-mediated increase in the peak current density and voltage-dependent gating of CaV1.2. Reversing the N348Q and N812Q mutations in the non-operational sextuplet Asn mutant protein partially restored CaVα2δ1 function. Single mutation N663Q and double mutations N348Q/N468Q, N348Q/N812Q, and N468Q/N812Q decreased protein stability/synthesis and nearly abolished steady-state cell surface density of CaVα2δ1 as well as the CaVα2δ1-induced up-regulation of L-type currents. These results demonstrate that Asn-663 and to a lesser extent Asn-348, Asn-468, and Asn-812 contribute to protein stability/synthesis of CaVα2δ1, and furthermore that N-glycosylation of CaVα2δ1 is essential to produce functional L-type Ca(2+) channels.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Membrana Celular/metabolismo , Miócitos Cardíacos/metabolismo , Processamento de Proteína Pós-Traducional , Substituição de Aminoácidos , Animais , Animais Recém-Nascidos , Canais de Cálcio Tipo L/genética , Membrana Celular/química , Células Cultivadas , Glicosilação , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Peso Molecular , Mutagênese Sítio-Dirigida , Miócitos Cardíacos/citologia , Mutação Puntual , Estabilidade Proteica , Coelhos , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...