Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979641

RESUMO

This study involves the synthesis and comparison of zeolitic imidazolate frameworks (ZIFs), specifically ZIF-8 and ZIF-67 pristine with a commercial zeolite, emphasizing their CO2 affinity and sorption capability. To overcome challenges persisting in the handling and integration of these materials into industrial adsorption processes, particularly when limited to microcrystalline fine powders, we present herein an innovative manufacturing method to produce standalone monolithic supports. This process involves pseudoplastic paste formulations utilizing polyethylenimine (PEI) as a coagulant and locally fabricated phosphorylated cellulose nanofiber (PCNF) as a binding agent. Rheological investigation was conducted to anticipate the required shaping and design by means of paste flowability, consistency, and stiffness. XRD and FTIR results confirm the preservation of crystalline structure and the occurrence of amine functionalization associated with the presence of PEI, respectively. The proposed method significantly enhances the CO2 adsorption performance of the produced ZIF-8 monolith in comparison with that reached when using the pristine material, achieving a capacity of 1.25-2 mmol·g-1 at 30 °C under dry conditions in a pressure range of 1-13 bar, respectively. In other words, this work clearly highlights an effective applicability of the ZIF-8 monolith as an innovative sorbent for further designing CO2 capture industrial setups.

2.
Int J Biol Macromol ; 268(Pt 2): 131855, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38679259

RESUMO

In this work, chitin (CT) was isolated from shrimp shell waste (SSW) and was then phosphorylated using diammonium hydrogen phosphate (DAP) as a phosphorylating agent in the presence of urea. The prepared samples were characterized using Scanning Electron Microscopy (SEM) and EDX-element mapping, Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA/DTG), conductometric titration, Degree of Substitution (DS) and contact angle measurements. The results of characterization techniques reveal the successful extraction and phosphorylation of chitin. The charge content of the phosphorylated chitin (P-CT) was 1.510 mmol·kg-1, the degree of substitution of phosphorus groups grafted on the CT surface achieved the value of 0.33. The adsorption mechanisms appeared to involve electrostatic attachment, specific adsorption (CdO or hydroxyl binding), and ion exchange. Regarding the adsorption of Cd2+, the effect of the adsorbent mass, initial concentration of Cd2+, contact time, pH, and temperature were studied in batch experiments, and optimum values for each parameter were identified. The experimental results revealed that P-CT enhanced the Cd2+ removal capacity by 17.5 %. The kinetic analyses favored the pseudo-second-order model over the pseudo-first-order model for describing the adsorption process accurately. Langmuir model aptly represented the adsorption isotherms, suggesting unimolecular layer adsorption with a maximum capacity of 62.71 mg·g-1 under optimal conditions of 30 °C, 120 min, pH 8, and a P-CT dose of 3 g·L-1. Regeneration experiments evidenced that P-CT can be used for 6 cycles without significant removal capacity loss. Consequently, P-CT presents an efficient and cost-effective potential biosorbent for Cd2+ removal in wastewater treatment applications.


Assuntos
Cádmio , Quitina , Quitina/química , Quitina/isolamento & purificação , Cádmio/química , Cádmio/isolamento & purificação , Animais , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Exoesqueleto/química , Fosforilação , Concentração de Íons de Hidrogênio , Cinética , Temperatura , Purificação da Água/métodos , Resíduos , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Int J Biol Macromol ; 260(Pt 1): 129464, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232892

RESUMO

This study focuses on the production of sulfated cellulose microfibers and nanocellulose hydrogels from native cellulose microfibers (CMF). The process involves using a combination of H2SO4 and urea, resulting in highly sulfated cellulose microfiber hydrogel (SC) with notable properties such as a sulfur content of 7.5 %, a degree of sulfation of 0.49, a surface charge content of 2.2 mmol. g-1, and a high yield of 81 %. The SC hydrogel can be easily fibrillated into sulfated nanocellulose hydrogel (S-NC) with elongated nanocellulose structures having an average diameter of 6.85 ± 3.11 nm, as determined using atomic force microscopy (AFM). X-ray photoelectron spectroscopy (XPS) analysis confirms the presence of sulfate groups on the surface of the nanocellulose material. Transparent films with good mechanical properties can be produced from both cellulose microfiber and nanocellulose hydrogels. The sulfate functionality gives the hydrogel attractive rheological properties and makes S-NC re-dispersible in water, which can be beneficial for various applications. This study demonstrates the potential of this process to address previous challenges related to nanocellulose materials production.


Assuntos
Hidrogéis , Sulfatos , Hidrogéis/química , Água/química , Celulose/química , Microscopia de Força Atômica
4.
Int J Biol Macromol ; 226: 345-356, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36470435

RESUMO

Cellulose-based biopolymers have emerged as one of the most promising components to produce sustainable composites as a potential substitutes to fossil-based materials. Herein, the aim of this study is to investigate the reinforcing effect of cellulose microfibers (CMFs) and cellulose nanocrystals (CNCs), extracted from alfa fibers (Stipa tenacissima), on the properties of starch biopolymer extracted from potato. The as-extracted CMFs (D = 5.94 ± 0.96 µm), CNCs (D = 14.29 ± 2.53 nm) and starch were firstly characterized in terms of their physicochemical properties. Afterwards, CMFs and CNCs were separately dispersed in starch at different concentrations, and their reinforcing effects as well as the chemical, thermal, transparency and mechanical properties of the resulted starch-based films were evaluated. Thus, CMFs and CNCs incorporation into starch resulted in a minor impact on the films thermal stability, while a considerable impact on the transparency property was observed. In terms of mechanical properties, the addition of up to 20 wt% CMFs reduced the film's elongation but drastically increased its stiffness by 300 %. On the other hand, in the case of CNCs, a loading of 10 wt% was found to be the most effective in increasing film stiffness (by 57 %), while increasing the loading up to 20 wt% CNCs enhanced the film's ductility (strain-to-failure) by 52 %. This study showed that introduction of cellulosic fibers having different sizes into starch can produce biocomposite materials with a wide range of properties for food packaging application.


Assuntos
Celulose , Nanopartículas , Celulose/química , Amido/química , Resistência à Tração , Poaceae/metabolismo , Nanopartículas/química
5.
Int J Biol Macromol ; 221: 398-415, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36063891

RESUMO

To obviate adverse effects from the non-biodegradability of certain polymer-based slow-release fertilizers (SRFs) and to offset higher operational costs, the use of biopolymers as coating material has recently caught interest in the research circles. The present work aims to design a sustainable coating material based on biodegradable polymers. To this end, Alfa plant was initially exploited as a viable sustainable source for the extraction of lignin (LGe), which was in turn integrated into the development of a three-dimensional cross-linked network, including methylcellulose (MC) as a matrix and citric acid (CA) as a cross-linking agent. Then, the designed coating material was applied onto Di-ammonium Phosphate (DAP) and Triple Superphosphate (TSP) water-soluble fertilizers in a rotating pan machine. Chemical, physical, and biodegradation studies have confirmed that the coating material is environmentally-friendly. Nutrients release experiments in water as well as in soil environments have proved the effectiveness of the MC and MC/LGe coating layers in delaying the nutrients discharge. Besides, the nutrients release from coated DAP and TSP lasted longer than 30 days. Furthermore, the coating film enhanced the fertilizers mechanical resistance and boosted the soil water retention capacity. The agronomic evaluation has also confirmed their remarkable potential in enhancing wheat leaf area, chlorophyll content and biomass, in addition to the roots architecture and the final fruiting efficiency. These results showed that this hybrid composite could be used as an efficient coating material to produce slow-release fertilizers with multifunctional performances.


Assuntos
Fertilizantes , Triticum , Fertilizantes/análise , Lignina , Metilcelulose , Solo , Água , Nutrientes , Polímeros/química
6.
Int J Biol Macromol ; 219: 949-963, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35934080

RESUMO

Cellulose is an interesting biopolymer offering numerous functionalization possibilities for various applications. Yet, cellulose functionalization usually involves expensive chemicals and complex processes. Here, we aim to utilize inexpensive fertilizer-grade phosphate for cellulose functionalization. Cellulose microfibers (CMF) were isolated from Giant Reed (GR) and were then phosphorylated using either a reagent-grade or a fertilizer-grade diammonium hydrogen phosphate (DAP) in the presence of urea following a water-based protocol. The effect of DAP on the phosphorylation reaction was mainly studied by conductometric titration, ICP-OES and FTIR, while further characterization was performed by SEM/EDX, TGA and XRD to investigate the morphology, composition, charge content, structure, and thermal degradation of the phosphorylated materials. It was found that cellulose phosphorylation using DAP fertilizer gave materials with the same charge content as that registered when using the reagent-grade DAP. Optimizing the reaction conditions with respect to the amount of fertilizer-grade DAP used for the phosphorylation gave high charge content (7000 mmol·g-1). The corresponding phosphorylated CMF (P-CMF) were processed into a paper and used as sorbent for methylene blue (MB) removal from aqueous solutions with different concentrations. The findings indicated that the pseudo-second-order model could be useful to assess the adsorption kinetics while the Langmuir isotherm model can suitably describe the adsorption isotherms. With fast adsorption kinetics (2-6 h), high adsorption efficiency (92-99 %) and a MB adsorption capacity of ~1200 mg·g-1 surpassing what has been reported so far for cellulose-based sorbents, the P-CMF paper holds great promises for the effective remediation of dye-contaminated wastewater effluents. Adsorption/desorption tests confirmed the reusability and regeneration of the paper with a recovery of 100 % for MB in the second cycle.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Adsorção , Celulose/química , Fertilizantes , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno/química , Fosfatos , Fosforilação , Ureia , Águas Residuárias/química , Água , Poluentes Químicos da Água/química
7.
RSC Adv ; 12(14): 8536-8546, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35424799

RESUMO

In general, during the papermaking process or the production of cellulosic materials for food-packaging applications, lignin and other amorphous components are usually removed via the pulping and multilevel bleaching process to entirely separate them from the fiber. The aim of this work was to study the positive effect that can impart the residual lignin remaining in the alkali-treated fiber surface over bleached fibers to produce an alternative food-packaging cellulosic paper. Herein, cellulosic papers based on alkali-treated and bleached fibers obtained from the Alfa plant were successfully prepared using a compression process. The as-obtained papers were coated by crosslinked starch using a solvent-casting method to improve their mechanical and surface properties. The morphological and contact angle results showed that the residual lignin in the alkali-treated cellulosic papers strongly increased the interfacial adhesion by making the structure denser and more compact, resulting in an improved water resistance property over the bleached ones. On the other hand, it also promoted char formation, slowing down the burning process, resulting in better flame resistance. Additionally, the mechanical properties demonstrated that the presence of lignin contributed to the material rigidity improvement without compromising its flexibility (folding endurance). The as-developed cellulosic papers coated with crosslinked starch could be used for the production of high-quality materials for food-packaging applications using conventional industrial processes.

8.
Waste Biomass Valorization ; 13(4): 2411-2423, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35096210

RESUMO

In this study, Artemisia annua stem waste was identified, for the first time, as a potential natural source to produce cellulose microfibers (CMF), as well as cellulose nanocrystals (CNC) with unique functionalities by using various organic acids. The CMF extraction was carried out using alkali and bleaching treatments, while the CNC were isolated under acid hydrolysis by using sulfuric acid (S-CNC), phosphoric acid (P-CNC), and hydrochloric acid / citric acid mixture (C-CNC). The CMF and CNC physicochemical, structural, morphological, dimensional, and thermal properties were characterized. CMF with a yield of 53%, diameter of 5 to 30 µm and crystallinity of 57% were successfully obtained. In contrast, CNC showed a rod-like shape with an aspect ratio of 53, 95, and 64 and a crystallinity index of 84, 79, and 72% for S-CNC, P-CNC, and C-CNC, respectively. Results suggested that the type of acid significantly influenced the structure, morphology, and thermal stability of CNCs. Based on these results, Artemisia annua stem waste is a great candidate source for cellulose derivatives with excellent characteristics.

9.
Int J Biol Macromol ; 200: 182-192, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995656

RESUMO

Enormous interest in using marine biomass as a sustainable resource for water treatment has been manifested over the past few decades. Herein, the objective was to investigate the possible use of green macroalgae (Codium tomentosum) for cellulose-based foam production through a versatile and convenient process. Macroporous cellulose monolith was prepared from cellulose hydrogel using freeze-drying process, resulting in a mechanically rigid monolith with a high swelling ratio. The as-produced spongy-like porous cellulosic material was used as bio-sorbent for wastewater treatment, particularly for removing methylene blue (MB) dye from concentrated aqueous solution. The adsorption capacity of MB was subsequently studied, and the effect of adsorption process parameters was determined in a controlled batch system. From the kinetic studies, it was found that the adsorption equilibrium was reached within 660 min. Furthermore, the analysis of the adsorption kinetics reveals that the data could be fitted by a pseudo-second order model, while the adsorption isotherm could be described by Langmuir isotherm model. The maximum adsorption capacity was found to be 454 mg/g. The findings suggested that the produced cellulose monolith could be used as a sustainable adsorbent for water treatment.


Assuntos
Celulose
10.
Int J Biol Macromol ; 189: 1029-1042, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34411612

RESUMO

Effective fertilizers management is essential for sustainable agricultural practices. One way to improve agronomic practices is by using slow-release fertilizers (SRF) that have shown interesting role in optimizing nutrients availability for plants growth. Considering the current ecological concerns, coated SRF using ecofriendly materials continue to attract great attention. In this context, novel waterborne and biodegradable coating nanocomposite formulations were elaborated from cellulose nanocrystals (CNC)-filled poly (vinyl alcohol) (PVA) for slow release NPK fertilizer with water retention property. CNC were extracted from hemp stalks using sulfuric acid hydrolysis process and their physico-chemical characteristics were investigated. CNC with various weight loadings (6, 10, 14.5 wt%) were incorporated into PVA polymer via solvent mixing method to produce viscous coating nanocomposite formulations with moderated shear viscosity. Uniform PVA@CNC coating microlayer was applied on the surface of NPK fertilizer granules in Wurster chamber of a fluidized bed dryer at controlled spraying and drying parameters. The nitrogen, phosphorus and potassium release profiles from coated NPK fertilizer were determined in water and soil. It was found that the coating materials extended the N-P-K nutrients release time from 3 days for uncoated fertilizer to 10 and 30 days for neat PVA- and CNC/PVA-coated fertilizer in soil medium, indicating the positive role of the presence of CNC in the PVA-based coatings. The morphology, coating rate and crushing strength of the as-prepared coated products were investigated in addition to their effect on water holding capacity and water retention of the soil. Enhanced crushing strength and water retention with a positive effect on the soil moisture were observed after coating NPK fertilizer, mainly with high CNC content (14.5 wt%). Therefore, these proposed nanocomposite coating materials showed a great potential for producing a new class of SRF with high nutrients use efficiency and water retention capacity, which could be beneficial to sustainable crop production.


Assuntos
Celulose/química , Fertilizantes , Nanocompostos/química , Nanopartículas/química , Álcool de Polivinil/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Nanocompostos/ultraestrutura , Nanopartículas/ultraestrutura , Nitrogênio/análise , Fósforo/análise , Potássio/análise , Solo/química , Temperatura , Viscosidade
11.
RSC Adv ; 12(2): 1084-1094, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35425114

RESUMO

In search for more effective and eco-friendly adsorbent materials, this study comprehensively investigated Cd2+ adsorption onto phosphorylated cellulose paper (PCP). For this, cellulose microfibers (CMF) was extracted from Alfa fibers and phosphorylated using the solid-state phosphorylation approach. Then, the prepared PCP samples were characterized by SEM, EDX, XRD, FTIR, TGA, conductometric titration and zeta potential measurement. The adsorption of cadmium ions, the effect of time, pH and Cd2+ initial concentration were systematically studied in batch experiments. Based on the results, the highest adsorption capacity achieved was 479 mg of Cd2+ per g of PCP, which was remarkable compared to other modified cellulose capacities cited in the literature. Furthermore, the Cd2+ removal mechanism was investigated based on characterization results before and after adsorption and also based on the kinetics results. It was concluded that cation exchange and electrostatic attraction between phosphorylated cellulose and the cadmium ion mainly dominated the adsorption process. These findings highlighted that the phosphorylated cellulose paper has a broad application prospect in removal of divalent metal from aquatic solution.

12.
RSC Adv ; 11(39): 24206-24216, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35479056

RESUMO

The introduction of phosphate groups into cellulosic fibers allows for the tuning of their fire resistance, chelating and metal-adhesion properties, enabling the development of flame-retardant adhesive and adsorbent materials. Toward that end, the major challenge is developing a novel efficient and environmentally friendly phosphorylation route that offers an alternative to existing methods, which can achieve the targeted properties. For this purpose, cellulosic fibers were chemically modified herein using solid-state phosphorylation with phosphoric acid and urea without causing substantial damage to the fibers. The morphological, physicochemical, structural and thermal characterisations were examined using FQA, SEM, EDX, FTIR, 13C/31P NMR, conductometric titration, zeta potential measurement and thermogravimetric analysis. All the characterisations converge towards a crosslinked polyanion structure, with about 20 wt% grafted phosphates, a nitrogen content of about 5 wt% and a very high charge density of 6608 mmol kg-1. Phosphate groups are linked to cellulose through a P-O-C bond in the form of orthophosphate and pyrophosphates. Furthermore, thermal properties of the phosphorylated cellulosic fibers were investigated and a new degradation mechanism was proposed.

13.
Int J Biol Macromol ; 162: 136-149, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32561278

RESUMO

With the growing environmental concerns and an emergent demand, a growing attention is turned to eco-friendly superabsorbent hydrogels instead of synthetic counterparts. Hydrogels based on cellulose derivatives can absorb and retain a huge amount of water in the interstitial sites of their structures, stimulating their uses in various useful industrial purposes. In this work, cross-linked superabsorbent composite hydrogel films (CHF) were designed, manufactured and characterized, by taking advantage of the combination of carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC) and newly developed regenerated cellulose (RC) spheres. RC with sphere-like shape was successfully prepared using a green method based on cold phosphoric acid-mediated dissolution of microcrystalline cellulose (MCC) followed by regeneration process using water as anti-solvent. Prior to be used, the morphological and structural properties of RC spheres, with an average diameter of 477 ± 270 nm, were examined by SEM, AFM, XRD, FTIR and TGA techniques. CHF crosslinked with citric acid were, in fact, prepared by solvent casting method with different RC weight fractions (i.e. 0, 2.5, 5, 10 and 15 wt%), then the crosslinking reaction was triggered by thermal treatment at 80 °C during 8 h. Prepared CHF were then characterized in terms of their structural, thermal, tensile and transparency properties. Swelling tests were carried at three different aqueous media (i.e. with a pH = 3, 6.4 or 11) to evaluate the water retention capacity of hydrogel films, as well as, the pH effect on their swelling and hydrolytic degradation properties. Collected results reveal that CHF with low RC content (i.e. RC weight fraction of 2.5 or 5 wt%) have the best tensile and swelling properties, with a tensile strength and a swelling capacity (at pH = 6.4) up to 95 MPa and 4000%, respectively.


Assuntos
Celulose/química , Hidrogéis/química , Ácidos Fosfóricos/química , Carboximetilcelulose Sódica/química , Celulose/análogos & derivados , Celulose/ultraestrutura , Hidrogéis/síntese química , Concentração de Íons de Hidrogênio , Hidrólise , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Fósforo/química , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Água/química , Difração de Raios X
14.
Int J Biol Macromol ; 136: 241-252, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31195048

RESUMO

In this work, sunflower oil cake (SOC) was identified as bio-sourced material for cellulose nanocrystals (CNC) production using chemical treatments followed by sulfuric acid hydrolysis. The hydrolysis was performed at 64% acid concentration, a temperature of 50 °C and at two different hydrolysis times, 15 min (CNC15) and 30 min (CNC30). It was found that CNC exhibited a diameter of 9 ±â€¯3 nm and 5 ±â€¯2 nm, a length of 354 ±â€¯101 nm and 329 ±â€¯98 nm, a crystallinity of 75% and 87%, a surface charge density of ~1.57 and ~1.88 sulfate groups per 100 anhydroglucose units and a zeta potential value of -25.6 and -30.7 mV, for CNC15 and CNC30, respectively. The thermal degradation under nitrogen atmosphere started at 225 °C (CNC15), which is relatively higher than the temperature for sulfuric acid hydrolyzed CNC from other sources. Due to a high importance of CNC application in aqueous systems, the rheological behaviour of CNC suspensions at various concentrations was evaluated by the steady shear viscosity measurements and the oscillatory dynamic tests. The results showed that the CNC suspensions exhibited a gel-like behaviour at very low CNC concentrations (0.1-1%) wherein a strong CNC entangled network is formed. Polymer nanoreinforcing capability of the newly produced CNC was also investigated in this study. CNC filled PVA nanocomposite films were produced at various CNC contents (1, 3, 5 and 8 wt%) and their mechanical and transparency properties were investigated, resulting in transparent nanocomposite materials with strong mechanical properties. The study suggested other possibilities to utilize agricultural wastes from SOC for CNC production with potential application as reinforcement in polymer nanocomposites.


Assuntos
Celulose/química , Celulose/isolamento & purificação , Fenômenos Químicos , Nanopartículas/química , Óleo de Girassol/química , Nanocompostos/química , Fenômenos Ópticos , Álcool de Polivinil/química , Propriedades de Superfície , Temperatura
15.
Carbohydr Polym ; 201: 482-489, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30241845

RESUMO

A self-standing filter with a porosity of 80% is prepared from naturally abundant cellulose biopolymer in its native state by water-based cationization and freeze-drying processes. The positive surface charge of the filter in a wide pH range favors its interaction with various nanoparticles (NPs), while its tortuous sheet structure builds a contact between cellulose nanofibers (CNF) and the NPs, and hinders them to pass through the filter. Unlike membranes used for the retention of NPs and viruses, the separation in the CNF filter is not only limited to its surface but occurs also in its interior even when the NPs are orders of magnitude smaller than the filter pores. Additional functionalities added to the filter enlarge the spectrum of NPs it can separate. NPs supported onto the filter can thereafter be utilized for the reduction of harmful chemicals into their benign form. The present filter concept may not only address shortcomings of the current membrane systems, but could offer a disruptive technology for the sustainable and universal water purification.

16.
J Colloid Interface Sci ; 504: 500-506, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28605713

RESUMO

Trimethyl-ammonium functionalized cellulose nanofibers (CNF) display a positively charged surface over a wide pH and ionic strength range, and constitute therefore not only an interesting biobased sorbent material, but also a positively charged model surface to investigate sorption phenomena. In the current work, CNF were totally or partially covered by humic acid (HA) at pH ∼6, and the desorption process of HA from CNF was thereafter studied in batch and continuous filtration experiments at various pH and ionic strength. It is found that the desorbed amount of HA increases and the kinetic of desorption is faster via increasing the pH and ionic strength of the solution. Moreover, the desorption is affected by the extent of CNF coverage with HA and by the presence of free HA in solution. The present work gives insights into the interaction of HA with permanently positively charged surfaces and was successfully exploited for the removal of HA from CNF filters for regeneration allowing multiple filter utilization.

17.
Carbohydr Polym ; 135: 334-40, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26453885

RESUMO

Cationic cellulose nanofibers (CNF) having 3 different contents of positively charged quaternary ammonium groups have been prepared from waste pulp residues according to a water-based modification method involving first the etherification of the pulp with glycidyltrimethylammonium chloride followed by mechanical disintegration. The cationic nanofibers obtained were observed by scanning electron microscopy and the extent of the reaction was evaluated by conductometric titration, ζ-potential measurements, and thermogravimetric analyses. The cationic CNF had a maximum cationic charge content of 1.2mmolg(-1) and positive ζ-potential at various pH values. Sorption of negatively charged contaminants (fluoride, nitrate, phosphate and sulphate ions) and their selectivity onto cationic CNF have been evaluated. Maximum sorption of ∼0.6mmolg(-1) of these ions by CNF was achieved and selectivity adsorption studies showed that cationic CNF are more selective toward multivalent ions (PO4(3-) and SO4(2-)) than monovalent ions (F(-) and NO3(-)). In addition, we demonstrated that cationic CNF can be manufactured into permeable membranes capable of dynamic nitrate adsorption by utilizing a simple paper-making process.

18.
Environ Sci Technol ; 49(5): 3167-74, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25629220

RESUMO

Fully polymeric and biobased CO2 sorbents composed of oxidized nanofibrillated cellulose (NFC) and a high molar mass polyethylenimine (PEI) have been prepared via a freeze-drying process. This resulted in NFC/PEI foams displaying a sheet structure with porosity above 97% and specific surface area in the range 2.7-8.3 m(2)·g(-1). Systematic studies on the impact of both PEI content and relative humidity on the CO2 capture capacity of the amine functionalized sorbents have been conducted under atmospheric conditions (moist air with ∼400 ppm of CO2). At 80% RH and an optimum PEI content of 44 wt %, a CO2 capacity of 2.22 mmol·g(-1), a stability over five cycles, and an exceptionally low adsorption half time of 10.6 min were achieved. In the 20-80% RH range studied, the increase in relative humidity increased CO2 capacity of NFC/PEI foams at the expense of a high H2O uptake in the range 3.8-28 mmol·g(-1).


Assuntos
Poluição do Ar/prevenção & controle , Dióxido de Carbono/química , Celulose/análogos & derivados , Nanoestruturas/química , Nanotecnologia/métodos , Polietilenoimina/análogos & derivados , Adsorção , Celulose/química , Liofilização/métodos , Umidade , Polietilenoimina/química , Porosidade , Fatores de Tempo
19.
ACS Appl Mater Interfaces ; 5(15): 7613-20, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23838433

RESUMO

To address brittleness of nanoclay hybrids of high inorganic content, ductile polymers (polyethylene oxide and hydroxyethyl cellulose) and montmorillonite (MTM) have been assembled into hybrid films using a water-based filtration process. Nacre-mimetic layered films resulted and were characterized by FE-SEM and XRD. Mechanical properties at ambient condition were studied by tensile test, while performance at elevated temperature and moisture conditions were evaluated by TGA, dynamic vapor sorption, and dynamic thermomechanical and hygromechanical analyses. Antiflammability and barrier properties against oxygen and water vapor were also investigated. Despite their high MTM content in the 60-85 wt % range, the hybrids exhibit remarkable ductility and a storage modulus above 2 GPa even in severe conditions (300°C or 94% RH). Moreover, they present fire-shielding property and are amongst the best oxygen and water vapor barrier hybrids reported in the literature. This study thus demonstrates nanostructure property advantages for synergistic effects in hybrids combining inexpensive, available, and environmentally benign constituents.

20.
Biomacromolecules ; 13(11): 3661-7, 2012 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-23046114

RESUMO

Nonwoven membranes based on electrospun fibers are of great interest in applications such as biomedical, filtering, and protective clothing. The poor mechanical performance is a limitation, as is some of the electrospinning solvents. To address these problems, porous nonwoven membranes based on nanofibrillated cellulose (NFC) modified by a hydroxyethyl cellulose (HEC) polymer coating are prepared. NFC/HEC aqueous suspensions are subjected to simple vacuum filtration in a paper-making fashion, followed by supercritical CO(2) drying. These nonwoven nanocomposite membranes are truly nanostructured and exhibit a nanoporous network structure with high specific surface area, as analyzed by nitrogen adsorption and FE-SEM. Mechanical properties evaluated by tensile tests show high strength combined with remarkably high strain to failure of up to 55%. XRD analysis revealed significant fibril realignment during tensile stretching. After postdrawing of the random mats, the modulus and strength are strongly increased. The present preparation route uses components from renewable resources, is environmentally friendly, and results in permeable membranes of exceptional mechanical performance.


Assuntos
Biopolímeros/química , Celulose/química , Membranas/química , Nanocompostos/química , Nanofibras/química , Papel , Porosidade , Estresse Mecânico , Propriedades de Superfície , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...