Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 15(9): e45075, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37842367

RESUMO

BACKGROUND: Many research studies seek to improve vital sign monitoring to enhance the conditions under which doctors and caregivers track patients' health. Non-invasive and contactless monitoring has emerged as an optimal solution for this problem, with telemedicine, self-monitoring, and well-being tools being the next generation of technology in the biomedical field. However, there is worldwide concern about the general purpose and bias toward a certain demographic group of these techniques. In particular, skin tone and the accuracy of monitoring dark skin tone groups have been key questions among researchers, with the lack of results and studies contributing to this uncertainty. METHODS: This paper proposes a benchmark for remote monitoring solutions against a medical device across different skin tone people. Around 330 videos from 90 patients were analyzed, and heart rate (HR) and heart rate variability (HRV) were compared across different subgroups. The Fitzpatrick scale (1-6) was used to classify participants into three skin tone groups: 1 and 2, 3 and 4, and 5 and 6. RESULTS: The results showed that our proposed methodology could estimate heart rate with a mean absolute error of 3 bpm across all samples and subgroups. Moreover, for heart rate variability (HRV) metrics, we achieved the following results: in terms of mobility assistive equipment (MAE), the HRV-inter-beat interval (IBI) was 10 ms, the HRV-standard deviation of normal to normal heartbeats (SDNN) was 14 ms, and the HRV-root mean square of successive differences (RMSSD) between normal heartbeats was 22 ms. No significant performance decrease was found for any skin tone group, and there was no error trend toward a certain group. CONCLUSIONS: The study showed that our methodology meets acceptable agreement levels for the proposed metrics. Furthermore, the experiments showed that skin tone did not impact the results, which remained within the same range across all groups. Moreover, it enables the end users to understand their general well-being and improve their overall health.

2.
Cureus ; 15(9): e45111, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37842400

RESUMO

Background Atrial fibrillation (AFIB) is a common atrial arrhythmia that affects millions of people worldwide. However, most of the time, AFIB is paroxysmal and can pass unnoticed in medical exams; therefore, regular screening is required. This paper proposes machine learning (ML) methods to detect AFIB from short-term electrocardiogram (ECG) and photoplethysmography (PPG) signals. Aim Several experiments were conducted across five different databases, with three of them containing ECG signals and the other two consisting of only PPG signals. Experiments were conducted to investigate the hypothesis that an ML model trained to predict AFIB from ECG segments could be used to predict AFIB from PPG segments. Materials and methods A random forest (RF) ML algorithm achieved the best accuracy and achieved a 90% accuracy rate on the University of Mississippi Medical Center (UMMC) dataset (216 samples) and a 97% accuracy rate on the Medical Information Mart for Intensive Care (MIMIC)-III datasets (2,134 samples). Results A total of 269,842 signal segments were analyzed across all datasets (212,266 were of normal sinus rhythm (NSR) and 57,576 corresponded to AFIB segments). Conclusions The ability to detect AFIB with significant accuracy using ML algorithms from PPG signals, which can be acquired via non-invasive contact or contactless, is a promising step forward toward the goal of achieving large-scale screening for AFIB.

3.
Cureus ; 14(11): e31649, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36540478

RESUMO

Background Regularly monitoring common physiological signs, including heart rate, blood pressure, and oxygen saturation, can effectively prevent or detect several potential conditions. In particular, cardiovascular diseases (CVDs) are a worldwide concern. According to the World Health Organization, 31% of all deaths worldwide are from CVDs. Recently, the coronavirus disease 2019 pandemic has increased the interest in remote monitoring. At present, contact devices are required to extract most of an individual's physiological information, which can be inconvenient for users and may cause discomfort. Methodology However, remote photoplethysmography (rPPG) technology offers a solution for this issue, enabling contactless monitoring of the blood volume pulse signal using a regular camera. Ultimately, it can provide the same physiological information as a contact device. In this paper, we propose an evaluation of Vastmindz's rPPG technology against medical devices in a clinical environment with a variety of subjects in a wide range of age, height, weight, and baseline vital signs. Results This study confirmed the findings that the contactless technology for the estimation of vitals proposed by Vastmindz was able to estimate heart rate, respiratory rate, and oxygen saturation with a mean error of ±3 units as well as ±10 mmHg for systolic and diastolic blood pressure. Conclusions Reported results have shown that Vastmindz's rPPG technology was able to meet the initial hypothesis and is acceptable for users who want to understand their general health and wellness.

4.
Cureus ; 14(7): e26871, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35978747

RESUMO

Regular monitoring of common physiological signs, including heart rate, blood pressure, and oxygen saturation, can be an effective way to either prevent or detect many kinds of chronic conditions. In particular, cardiovascular diseases (CVDs) are a worldwide concern. According to the World Health Organization, 32% of all deaths worldwide are from CVDs. In addition, stress-related illnesses cost $190 billion in healthcare costs per year. Currently, contact devices are required to extract most of an individual's physiological information, which can be uncomfortable for users and can cause discomfort. However, in recent years, remote photoplethysmography (rPPG) technology is gaining interest, which enables contactless monitoring of the blood volume pulse signal using a regular camera, and ultimately can provide the same physiological information as a contact device. In this paper, we propose a benchmark comparison using a new multimodal database consisting of 56 subjects where each subject was submitted to three different tasks. Each subject wore a wearable device capable of extracting photoplethysmography signals and was filmed to allow simultaneous rPPG signal extraction. Several experiments were conducted, including a comparison between information from contact and remote signals and stress state recognition. Results have shown that in this dataset, rPPG signals were capable of dealing with motion artifacts better than contact PPG sensors and overall had better quality if compared to the signals from the contact sensor. Moreover, the statistical analysis of the variance method had shown that at least two heart-rate variability (HRV) features, NNi 20 and SAMPEN, were capable of differentiating between stress and non-stress states. In addition, three features, inter-beat interval (IBI), NNi 20, and SAMPEN, were capable of differentiating between tasks relating to different levels of difficulty. Furthermore, using machine learning to classify a "stressed" or "unstressed" state, the models were able to achieve an accuracy score of 83.11%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...