Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
JCI Insight ; 9(11)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713515

RESUMO

Portal hypertension (PHTN) is a severe complication of liver cirrhosis and is associated with intrahepatic sinusoidal remodeling induced by sinusoidal resistance and angiogenesis. Collagen type IV (COL4), a major component of basement membrane, forms in liver sinusoids upon chronic liver injury. However, the role, cellular source, and expression regulation of COL4 in liver diseases are unknown. Here, we examined how COL4 is produced and how it regulates sinusoidal remodeling in fibrosis and PHTN. Human cirrhotic liver sample RNA sequencing showed increased COL4 expression, which was further verified via immunofluorescence staining. Single-cell RNA sequencing identified liver sinusoidal endothelial cells (LSECs) as the predominant source of COL4 upregulation in mouse fibrotic liver. In addition, COL4 was upregulated in a TNF-α/NF-κB-dependent manner through an epigenetic mechanism in LSECs in vitro. Indeed, by utilizing a CRISPRi-dCas9-KRAB epigenome-editing approach, epigenetic repression of the enhancer-promoter interaction showed silencing of COL4 gene expression. LSEC-specific COL4 gene mutation or repression in vivo abrogated sinusoidal resistance and angiogenesis, which thereby alleviated sinusoidal remodeling and PHTN. Our findings reveal that LSECs promote sinusoidal remodeling and PHTN during liver fibrosis through COL4 deposition.


Assuntos
Colágeno Tipo IV , Células Endoteliais , Hipertensão Portal , Cirrose Hepática , Fígado , Hipertensão Portal/metabolismo , Hipertensão Portal/patologia , Hipertensão Portal/genética , Animais , Colágeno Tipo IV/metabolismo , Colágeno Tipo IV/genética , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/genética , Fígado/patologia , Fígado/metabolismo , Fígado/irrigação sanguínea , Masculino , NF-kappa B/metabolismo , Camundongos Endogâmicos C57BL , Epigênese Genética
2.
Biomedicines ; 12(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38672154

RESUMO

OBJECTIVE: Circulating exosome-enriched extracellular vesicles (EVs) have drawn considerable importance in obesity-related insulin-resistance (IR). We sought to compare the proteomics profile of serum exosomes from normal individuals and those with obesity and IR. METHODS: We isolated serum exosomes from male subjects with obesity and insulin resistance (Ob-IR, HOMA-IR > 2.0) and lean/overweight insulin-sensitive (Normal (N), HOMA-IR < 2.0) individuals. The differential protein expression between the two groups was detected by a label-free quantitative mass spectrometry analysis followed by GO annotation and ingenuity pathway analysis (IPA). RESULTS: We identified 23 upregulated and 46 downregulated proteins between Ob-IR and N groups. Some of these proteins are involved in altering insulin signaling (VPS13C, TBC1D32, TTR, and ADIPOQ), inflammation (NFκB and CRP), and B-cell proliferation/activation (IGLV4-69, IGKV1D-13, and IGHV4-28). GO analysis revealed that the differentially expressed proteins (DEPs) are mainly involved in regulating immune cell activation and are located in extracellular space. IPA analysis showed that top molecules mediating IR, inflammation and B-cell activation were upregulated in Ob-IR subjects compared to N subjects. CONCLUSIONS: Serum exosomal proteins can be used as biomarkers to identify the future risk of diabetes and a therapeutic target to prevent or slow down the progression of diabetes in high-risk individuals.

3.
Front Immunol ; 14: 1130184, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153573

RESUMO

Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid associated with nonalcoholic steatohepatitis (NASH). Immune cell-driven inflammation is a key determinant of NASH progression. Macrophages, monocytes, NK cells, T cells, NKT cells, and B cells variably express S1P receptors from a repertoire of 5 receptors termed S1P1 - S1P5. We have previously demonstrated that non-specific S1P receptor antagonism ameliorates NASH and attenuates hepatic macrophage accumulation. However, the effect of S1P receptor antagonism on additional immune cell populations in NASH remains unknown. We hypothesized that S1P receptor specific modulation may ameliorate NASH by altering leukocyte recruitment. A murine NASH model was established by dietary feeding of C57BL/6 male mice with a diet high in fructose, saturated fat, and cholesterol (FFC) for 24 weeks. In the last 4 weeks of dietary feeding, the mice received the S1P1,4,5 modulator Etrasimod or the S1P1 modulator Amiselimod, daily by oral gavage. Liver injury and inflammation were determined by histological and gene expression analyses. Intrahepatic leukocyte populations were analyzed by flow cytometry, immunohistochemistry, and mRNA expression. Alanine aminotransferase, a sensitive circulating marker for liver injury, was reduced in response to Etrasimod and Amiselimod treatment. Liver histology showed a reduction in inflammatory foci in Etrasimod-treated mice. Etrasimod treatment substantially altered the intrahepatic leukocyte populations through a reduction in the frequency of T cells, B cells, and NKT cells and a proportional increase in CD11b+ myeloid cells, polymorphonuclear cells, and double negative T cells in FFC-fed and control standard chow diet (CD)-fed mice. In contrast, FFC-fed Amiselimod-treated mice showed no changes in the frequencies of intrahepatic leukocytes. Consistent with the improvement in liver injury and inflammation, hepatic macrophage accumulation and the gene expression of proinflammatory markers such as Lgals3 and Mcp-1 were decreased in Etrasimod-treated FFC-fed mice. Etrasimod treated mouse livers demonstrated an increase in non-inflammatory (Marco) and lipid associated (Trem2) macrophage markers. Thus, S1P1,4,5 modulation by Etrasimod is more effective than S1P1 antagonism by Amiselimod, at the dose tested, in ameliorating NASH, likely due to the alteration of leukocyte trafficking and recruitment. Etrasimod treatment results in a substantial attenuation of liver injury and inflammation in murine NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores de Esfingosina-1-Fosfato , Camundongos Endogâmicos C57BL , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Leucócitos/metabolismo , Glicoproteínas de Membrana , Receptores Imunológicos/uso terapêutico
4.
Clin Gastroenterol Hepatol ; 21(12): 3080-3088.e9, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37004974

RESUMO

BACKGROUND & AIMS: Although histology is considered the gold standard for diagnosis of alcohol-associated hepatitis (AH), it is not required for entry into therapeutic studies if patients meet National Institute on Alcohol Abuse and Alcoholism (NIAAA) consensus criteria for probable AH. Our aim was to assess the diagnostic accuracy of NIAAA criteria against liver biopsy and to explore new criteria to enhance diagnostic accuracy for AH. METHODS: A total of 268 consecutive patients with alcohol-related liver disease with liver biopsy were prospectively included: 210 and 58 in the derivation and validation cohorts, respectively. NIAAA criteria and histological diagnosis of alcoholic steatohepatitis (ASH) were independently reviewed by clinical investigators and pathologists from Hospital Clínic and Mayo Clinic. Using biopsy-proven ASH as gold standard we determined diagnostic capability of NIAAA criteria and proposed the new improved criteria. RESULTS: In the derivation cohort, diagnostic accuracy of NIAAA for AH was modest (72%) due to low sensitivity (63%). Subjects who did not meet NIAAA with ASH at liver biopsy had lower 1-year survival compared with subjects without ASH (70% vs 90%; P < .001). NIAAAm-CRP criteria, created by adding C-reactive protein and modifying the variables of the original NIAAA, had higher sensitivity (70%), accuracy (78%), and specificity (83%). Accuracy was also higher in a sensitivity analysis in severe AH (74% vs 65%). In the validation cohort, NIAAAm-CRP and NIAAA criteria had a sensitivity of 56% vs 52% and an accuracy of 76% vs 69%, respectively. CONCLUSION: NIAAA criteria are suboptimal for the diagnosis of AH. The proposed NIAAAm-CRP criteria may improve accuracy for noninvasive diagnosis of AH in patients with alcohol-related liver disease.


Assuntos
Alcoolismo , Fígado Gorduroso Alcoólico , Hepatite Alcoólica , Estados Unidos , Humanos , National Institute on Alcohol Abuse and Alcoholism (U.S.) , Hepatite Alcoólica/diagnóstico , Fígado Gorduroso Alcoólico/diagnóstico , Alcoolismo/complicações , Alcoolismo/diagnóstico
5.
Metabolism ; 144: 155562, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37088122

RESUMO

OBJECTIVES: Hepatocytic CEACAM1 plays a critical role in NASH pathogenesis, as bolstered by the development of insulin resistance, visceral obesity, steatohepatitis and fibrosis in mice with global Ceacam1 (Cc1) deletion. In contrast, VECadCre+Cc1fl/fl mice with endothelial loss of Cc1 manifested insulin sensitivity with no visceral obesity despite elevated NF-κB signaling and increased systemic inflammation. We herein investigated whether VECadCre+Cc1fl/fl male mice develop hepatic fibrosis and whether this is mediated by increased production of endothelin1 (ET1), a transcriptional NF-κB target. METHODS: VECadCre+Et1.Cc1fl/fl mice with combined endothelial loss of Cc1/Et1 genes were generated. Histological and immunohistochemical analyses were conducted on their livers and on liver tissue biopsies from adult patients undergoing bariatric surgery or from patients with NASH diagnosis receiving liver transplant. RESULTS: Hepatic fibrosis and inflammatory infiltration developed in VECadCre+Cc1fl/fl liver parenchyma. This was preceded by increased ET1 production and reversed with combined endothelial loss of Et1. Conditioned media from VECadCre+Cc1fl/fl, but not VECadCre+Et1.Cc1fl/fl primary liver endothelial cells activated wild-type hepatic stellate cells; a process inhibited by bosentan, an ETAR/ETBR dual antagonist. Consistently, immunohistochemical analysis of liver biopsies from patients with NASH showed a decline in endothelial CEACAM1 in parallel with increased plasma endothelin1 levels and progression of hepatic fibrosis stage. CONCLUSIONS: The data demonstrated that endothelial CEACAM1 plays a key role in preventing hepatic fibrogenesis by reducing autocrine endothelin1 production.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Masculino , Camundongos , Antígeno Carcinoembrionário/genética , Células Endoteliais/patologia , Fígado/patologia , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL , NF-kappa B , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/patologia
6.
JHEP Rep ; 4(5): 100466, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35462859

RESUMO

Alcohol-related liver disease (ARLD) is a primary cause of chronic liver disease in the United States. Despite advances in the diagnosis and management of ARLD, it remains a major public health problem associated with significant morbidity and mortality, emphasising the need to adopt novel approaches to the study of ARLD and its complications. Epigenetic changes are increasingly being recognised as contributing to the pathogenesis of multiple disease states. Harnessing the power of innovative technologies for the study of epigenetics (e.g., next-generation sequencing, DNA methylation assays, histone modification profiling and computational techniques like machine learning) has resulted in a seismic shift in our understanding of the pathophysiology of ARLD. Knowledge of these techniques and advances is of paramount importance for the practicing hepatologist and researchers alike. Accordingly, in this review article we will summarise the current knowledge about alcohol-induced epigenetic alterations in the context of ARLD, including but not limited to, DNA hyper/hypo methylation, histone modifications, changes in non-coding RNA, 3D chromatin architecture and enhancer-promoter interactions. Additionally, we will discuss the state-of-the-art techniques used in the study of ARLD (e.g. single-cell sequencing). We will also highlight the epigenetic regulation of chemokines and their proinflammatory role in the context of ARLD. Lastly, we will examine the clinical applications of epigenetics in the diagnosis and management of ARLD.

7.
J Hepatol ; 77(3): 723-734, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35421427

RESUMO

BACKGROUND & AIMS: Liver sinusoidal endothelial cells (LSECs) are ideally situated to sense stiffness and generate angiocrine programs that potentially regulate liver fibrosis and portal hypertension. We explored how specific focal adhesion (FA) proteins parlay LSEC mechanotransduction into stiffness-induced angiocrine signaling in vitro and in vivo. METHODS: Primary human and murine LSECs were placed on gels with incremental stiffness (0.2 kPa vs. 32 kPa). Cell response was studied by FA isolation, actin polymerization assay, RNA-sequencing and electron microscopy. Glycolysis was assessed using radioactive tracers. Epigenetic regulation of stiffness-induced genes was analyzed by chromatin-immunoprecipitation (ChIP) analysis of histone activation marks, ChIP sequencing and circularized chromosome conformation capture (4C). Mice with LSEC-selective deletion of glycolytic enzymes (Hk2fl/fl/Cdh5cre-ERT2) or treatment with the glycolysis inhibitor 3PO were studied in portal hypertension (partial ligation of the inferior vena cava, pIVCL) and early liver fibrosis (CCl4) models. RESULTS: Glycolytic enzymes, particularly phosphofructokinase 1 isoform P (PFKP), are enriched in isolated FAs from LSECs on gels with incremental stiffness. Stiffness resulted in PFKP recruitment to FAs, which paralleled an increase in glycolysis. Glycolysis was associated with expansion of actin dynamics and was attenuated by inhibition of integrin ß1. Inhibition of glycolysis attenuated a stiffness-induced CXCL1-dominant angiocrine program. Mechanistically, glycolysis promoted CXCL1 expression through nuclear pore changes and increases in NF-kB translocation. Biochemically, this CXCL1 expression was mediated through spatial re-organization of nuclear chromatin resulting in formation of super-enhancers, histone acetylation and NF-kB interaction with the CXCL1 promoter. Hk2fl/fl/Cdh5cre-ERT2 mice showed attenuated neutrophil infiltration and portal hypertension after pIVCL. 3PO treatment attenuated liver fibrosis in a CCl4 model. CONCLUSION: Glycolytic enzymes are involved in stiffness-induced angiocrine signaling in LSECs and represent druggable targets in early liver disease. LAY SUMMARY: Treatment options for liver fibrosis and portal hypertension still represent an unmet need. Herein, we uncovered a novel role for glycolytic enzymes in promoting stiffness-induced angiocrine signaling, which resulted in inflammation, fibrosis and portal hypertension. This work has revealed new targets that could be used in the prevention and treatment of liver fibrosis and portal hypertension.


Assuntos
Células Endoteliais , Hipertensão Portal , Actinas/metabolismo , Animais , Quimiocina CXCL1/metabolismo , Cromatina/metabolismo , Células Endoteliais/metabolismo , Epigênese Genética , Glicólise , Histonas/metabolismo , Humanos , Hipertensão Portal/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Mecanotransdução Celular , Camundongos , NF-kappa B/metabolismo
8.
J Hepatol ; 76(4): 921-933, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34953958

RESUMO

BACKGROUND & AIMS: Biliary disease is associated with a proliferative/fibrogenic ductular reaction (DR). p300 is an epigenetic regulator that acetylates lysine 27 on histone 3 (H3K27ac) and is activated during fibrosis. Long non-coding RNAs (lncRNAs) are aberrantly expressed in cholangiopathies, but little is known about how they recruit epigenetic complexes and regulate DR. We investigated epigenetic complexes, including transcription factors (TFs) and lncRNAs, contributing to p300-mediated transcription during fibrosis. METHODS: We evaluated p300 in vivo using tamoxifen-inducible, cholangiocyte-selective, p300 knockout (KO) coupled with bile duct ligation (BDL) and Mdr KO mice treated with SGC-CBP30. Primary cholangiocytes and liver tissue were analyzed for expression of Acta2-as1 lncRNA by qPCR and RNA in situ hybridization. In vitro, we performed RNA-sequencing in human cholangiocytes with a p300 inhibitor. Cholangiocytes were exposed to lipopolysaccharide (LPS) as an injury model. We confirmed formation of a p300/ELK1 complex by immunoprecipitation (IP). RNA IP was used to examine interactions between ACTA2-AS1 and p300. Chromatin IP assays were used to evaluate p300/ELK1 occupancy and p300-mediated H3K27ac. Organoids were generated from ACTA2-AS1-depleted cholangiocytes. RESULTS: BDL-induced DR and fibrosis were reduced in Krt19-CreERT/p300fl/fl mice. Similarly, Mdr KO mice were protected from DR and fibrosis after SGC-CBP30 treatment. In vitro, depletion of ACTA2-AS1 reduced expression of proliferative/fibrogenic markers, reduced LPS-induced cholangiocyte proliferation, and impaired organoid formation. ACTA2-AS1 regulated transcription by facilitating p300/ELK1 binding to the PDGFB promoter after LPS exposure. Correspondingly, LPS-induced H3K27ac was mediated by p300/ELK1 and was reduced in ACTA2-AS1-depleted cholangiocytes. CONCLUSION: Cholangiocyte-selective p300 KO or p300 inhibition attenuate DR/fibrosis in mice. ACTA2-AS1 influences recruitment of p300/ELK1 to specific promoters to drive H3K27ac and epigenetic activation of proliferative/fibrogenic genes. This suggests that cooperation between epigenetic co-activators and lncRNAs facilitates DR/fibrosis in biliary diseases. LAY SUMMARY: We identified a three-part complex containing an RNA molecule, a transcription factor, and an epigenetic enzyme. The complex is active in injured bile duct cells and contributes to activation of genes involved in proliferation and fibrosis.


Assuntos
RNA Longo não Codificante , Animais , Ductos Biliares/patologia , Proliferação de Células , Fibrose , Lipopolissacarídeos , Fígado/patologia , Camundongos , Camundongos Knockout , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
9.
Nat Commun ; 12(1): 4560, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315876

RESUMO

Alcoholic hepatitis (AH) is associated with liver neutrophil infiltration through activated cytokine pathways leading to elevated chemokine expression. Super-enhancers are expansive regulatory elements driving augmented gene expression. Here, we explore the mechanistic role of super-enhancers linking cytokine TNFα with chemokine amplification in AH. RNA-seq and histone modification ChIP-seq of human liver explants show upregulation of multiple CXCL chemokines in AH. Liver sinusoidal endothelial cells (LSEC) are identified as an important source of CXCL expression in human liver, regulated by TNFα/NF-κB signaling. A super-enhancer is identified for multiple CXCL genes by multiple approaches. dCas9-KRAB-mediated epigenome editing or pharmacologic inhibition of Bromodomain and Extraterminal (BET) proteins, transcriptional regulators vital to super-enhancer function, decreases chemokine expression in vitro and decreases neutrophil infiltration in murine models of AH. Our findings highlight the role of super-enhancer in propagating inflammatory signaling by inducing chemokine expression and the therapeutic potential of BET inhibition in AH treatment.


Assuntos
Quimiocinas/biossíntese , Citocinas/farmacologia , Elementos Facilitadores Genéticos , Hepatite Alcoólica/genética , Animais , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Humanos , Lipopolissacarídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Regiões Promotoras Genéticas/genética , RNA-Seq , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Nanomedicine ; 36: 102430, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34174416

RESUMO

There is increasing interest in the development of minimally invasive biomarkers for the diagnosis and prognosis of NAFLD via extracellular vesicles (EV). Plasma EVs were isolated by differential ultracentrifugation and quantified by nanoparticle tracking analysis from pre (n = 28) and post (n = 28) weight loss patients. In the pre weight loss group 22 had NAFLD. Nanoplasmon enhanced scattering (nPES) of gold nanoparticles conjugated to hepatocyte-specific antibodies was employed to identify hepatocyte-specific EVs. Complex lipid panel and targeted sphingolipids were performed. Logistic regression analysis was used to identify predictors of NAFLD. Plasma levels of EVs and hepatocyte-derived EVs are dynamic and decrease following NAFLD resolution due to weight loss surgery. Hepatocyte-derived EVs correlate with steatosis in NAFLD patients and steatosis and inflammation in NASH patients. Plasma levels of small EVs correlate with EV sphingolipids in patients with NASH. Hepatocyte-derived EVs measured by the nPES assay could serve as a point-of-care test for NAFLD.


Assuntos
Hepatócitos/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Redução de Peso , Adulto , Biomarcadores/sangue , Vesículas Extracelulares , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/cirurgia
13.
Front Physiol ; 12: 664222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025452

RESUMO

Alcohol-associated liver disease (ALD) has been recognized as the most common cause of advanced liver disease worldwide, though mechanisms of pathogenesis remain incompletely understood. The X-linked inhibitor of apoptosis (XIAP) protein was originally described as an anti-apoptotic protein that directly binds and inhibits caspases-3, 7, and 9. Here, we investigated the function of XIAP in hepatocytes in vitro using gain and loss-of-function approaches. We noted an XIAP-dependent increase in caspase activation as well as increased inflammatory markers and pro-inflammatory EV release from hepatocytes in vitro. Primary hepatocytes (PMH) from Xiap Alb.Cre and Xiap loxP mice exhibited higher cell death but surprisingly, lower expression of inflammation markers. Conditioned media from these isolated Xiap deleted PMH further decrease inflammation in bone marrow-derived macrophages. Also, interestingly, when administered an ethanol plus Fas-agonist-Jo2 model and an ethanol plus CCl4 model, these animals failed to develop an exacerbated disease phenotype in vivo. Of note, neither Xiap Alb . Cre nor Xiap AAV8.Cre mice presented with aggravated liver injury, hepatocyte apoptosis, liver steatosis, or fibrosis. Since therapeutics targeting XIAP are currently in clinical trials and caspase-induced death is very important for development of ALD, we sought to explore the potential basis of this unexpected lack of effect. We utilized scRNA-seq and spatially reconstructed hepatocyte transcriptome data from human liver tissue and observed that XIAP was significantly zonated, along with its endogenous inhibitor second mitochondria-derived activator of caspases (SMAC) in periportal region. This contrasted with pericentral zonation of other IAPs including cIAP1 and Apollon as well as caspases 3, 7, and 9. Thus providing a potential explanation for compensation of the effect of Xiap deletion by other IAPs. In conclusion, our findings implicate a potential zonallydependent role for SMAC that prevented development of a phenotype in XIAP knockout mice in ALD models. Targeting SMAC may also be important in addition to current efforts of targeting XIAP in treatment of ALD.

14.
Nat Rev Gastroenterol Hepatol ; 18(9): 630-647, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33976393

RESUMO

Inflammation is a major contributor to the pathogenesis of almost all liver diseases. Low-molecular-weight proteins called chemokines are the main drivers of liver infiltration by immune cells such as macrophages, neutrophils and others during an inflammatory response. During the past 25 years, tremendous progress has been made in understanding the regulation and functions of chemokines in the liver. This Review summarizes three main aspects of the latest advances in the study of chemokine function in liver diseases. First, we provide an overview of chemokine biology, with a particular focus on the genetic and epigenetic regulation of chemokine transcription as well as on the cell type-specific production of chemokines by liver cells and liver-associated immune cells. Second, we highlight the functional roles of chemokines in liver homeostasis and their involvement in progression to disease in both human and animal models. Third, we discuss the therapeutic opportunities targeting chemokine production and signalling in the treatment of liver diseases, such as alcohol-associated liver disease and nonalcoholic steatohepatitis, including the relevant preclinical studies and ongoing clinical trials.


Assuntos
Quimiocinas/metabolismo , Hepatopatias/metabolismo , Epigênese Genética , Humanos
15.
Hepatology ; 74(5): 2699-2713, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34002868

RESUMO

BACKGROUND AND AIMS: Acute kidney injury (AKI) has a poor prognosis in cirrhosis. Given the variability of creatinine, the prediction of AKI and dialysis by other markers is needed. The aim of this study is to determine the role of serum and urine metabolomics in the prediction of AKI and dialysis in an inpatient cirrhosis cohort. APPROACH AND RESULTS: Inpatients with cirrhosis from 11 North American Consortium of End-stage Liver Disease centers who provided admission serum/urine when they were AKI and dialysis-free were included. Analysis of covariance adjusted for demographics, infection, and cirrhosis severity was performed to identify metabolites that differed among patients (1) who developed AKI or not; (2) required dialysis or not; and/pr (3) within AKI subgroups who needed dialysis or not. We performed random forest and AUC analyses to identify specific metabolite(s) associated with outcomes. Logistic regression with clinical variables with/without metabolites was performed. A total of 602 patients gave serum (218 developed AKI, 80 needed dialysis) and 435 gave urine (164 developed AKI, 61 needed dialysis). For AKI prediction, clinical factor-adjusted AUC was 0.91 for serum and 0.88 for urine. Major metabolites such as uremic toxins (2,3-dihydroxy-5-methylthio-4-pentenoic acid [DMTPA], N2N2dimethylguanosine, uridine/pseudouridine) and tryptophan/tyrosine metabolites (kynunerate, 8-methoxykyunerate, quinolinate) were higher in patients who developed AKI. For dialysis prediction, clinical factor-adjusted AUC was 0.93 for serum and 0.91 for urine. Similar metabolites as AKI were altered here. For dialysis prediction in those with AKI, the AUC was 0.81 and 0.79 for serum/urine. Lower branched-chain amino-acid (BCAA) metabolites but higher cysteine, tryptophan, glutamate, and DMTPA were seen in patients with AKI needing dialysis. Serum/urine metabolites were additive to clinical variables for all outcomes. CONCLUSIONS: Specific admission urinary and serum metabolites were significantly additive to clinical variables to predict AKI development and dialysis initiation in inpatients with cirrhosis. These observations can potentially facilitate earlier initiation of renoprotective measures.


Assuntos
Injúria Renal Aguda/epidemiologia , Doença Hepática Terminal/complicações , Cirrose Hepática/complicações , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/terapia , Idoso , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores/urina , Doença Hepática Terminal/sangue , Doença Hepática Terminal/metabolismo , Doença Hepática Terminal/urina , Feminino , Humanos , Cirrose Hepática/sangue , Cirrose Hepática/metabolismo , Cirrose Hepática/urina , Masculino , Metabolômica/estatística & dados numéricos , Pessoa de Meia-Idade , Admissão do Paciente/estatística & dados numéricos , Prognóstico , Estudos Prospectivos , Diálise Renal/estatística & dados numéricos , Medição de Risco/métodos , Medição de Risco/estatística & dados numéricos
18.
J Med Internet Res ; 23(4): e24639, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33744844

RESUMO

BACKGROUND: Health information technology (IT) interventions to decrease readmissions for cirrhosis may be limited by patient-associated factors. OBJECTIVE: The aim of this study was to determine perspectives regarding adoption versus refusal of health IT interventions among patient-caregiver dyads. METHODS: Inpatients with cirrhosis and their caregivers were approached to participate in a randomized health IT intervention trial requiring daily contact with research teams via the Patient Buddy app. This app focuses on ascites, medications, and hepatic encephalopathy over 30 days. Regression analyses for characteristics associated with acceptance were performed. For those who declined, a semistructured interview was performed with themes focused on caregivers, protocol, transport/logistics, technology demands, and privacy. RESULTS: A total of 349 patient-caregiver dyads were approached (191 from Virginia Commonwealth University, 56 from Richmond Veterans Affairs Medical Center, and 102 from Mayo Clinic), 87 of which (25%) agreed to participate. On regression, dyads agreeing included a male patient (odds ratio [OR] 2.08, P=.01), gastrointestinal bleeding (OR 2.3, P=.006), or hepatic encephalopathy admission (OR 2.0, P=.01), whereas opioid use (OR 0.46, P=.03) and alcohol-related etiology (OR 0.54, P=.02) were associated with refusal. Race, study site, and other admission reasons did not contribute to refusing participation. Among the 262 dyads who declined randomization, caregiver reluctance (43%), perceived burden (31%), technology-related issues (14%), transportation/logistics (10%), and others (4%), but not privacy, were highlighted as major concerns. CONCLUSIONS: Patients with cirrhosis admitted with hepatic encephalopathy and gastrointestinal bleeding without opioid use or alcohol-related etiologies were more likely to participate in a health IT intervention focused on preventing readmissions. Caregiver and study burden but not privacy were major reasons to decline participation. Reducing perceived patient-caregiver burden and improving communication may improve participation. TRIAL REGISTRATION: ClinicalTrials.gov NCT03564626; https://www.clinicaltrials.gov/ct2/show/NCT03564626.


Assuntos
Cuidadores , Pacientes Internados , Estudos Transversais , Humanos , Cirrose Hepática , Masculino , Qualidade de Vida
19.
Nat Med ; 27(4): 601-615, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33753937

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) pandemic, which has resulted in global healthcare crises and strained health resources. As the population of patients recovering from COVID-19 grows, it is paramount to establish an understanding of the healthcare issues surrounding them. COVID-19 is now recognized as a multi-organ disease with a broad spectrum of manifestations. Similarly to post-acute viral syndromes described in survivors of other virulent coronavirus epidemics, there are increasing reports of persistent and prolonged effects after acute COVID-19. Patient advocacy groups, many members of which identify themselves as long haulers, have helped contribute to the recognition of post-acute COVID-19, a syndrome characterized by persistent symptoms and/or delayed or long-term complications beyond 4 weeks from the onset of symptoms. Here, we provide a comprehensive review of the current literature on post-acute COVID-19, its pathophysiology and its organ-specific sequelae. Finally, we discuss relevant considerations for the multidisciplinary care of COVID-19 survivors and propose a framework for the identification of those at high risk for post-acute COVID-19 and their coordinated management through dedicated COVID-19 clinics.


Assuntos
COVID-19/complicações , SARS-CoV-2 , Doença Aguda , COVID-19/epidemiologia , COVID-19/etnologia , COVID-19/terapia , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/terapia , Humanos , Defesa do Paciente , Síndrome , Síndrome de Resposta Inflamatória Sistêmica/epidemiologia , Síndrome de Resposta Inflamatória Sistêmica/terapia , Tromboembolia Venosa/epidemiologia , Tromboembolia Venosa/prevenção & controle
20.
Hepatology ; 73(2): 571-585, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32246544

RESUMO

BACKGROUND AND AIMS: Alcoholic hepatitis (AH) is diagnosed by clinical criteria, although several objective scores facilitate risk stratification. Extracellular vesicles (EVs) have emerged as biomarkers for many diseases and are also implicated in the pathogenesis of AH. Therefore, we investigated whether plasma EV concentration and sphingolipid cargo could serve as diagnostic biomarkers for AH and inform prognosis to permit dynamic risk profiling of AH subjects. APPROACH AND RESULTS: EVs were isolated and quantified from plasma samples from healthy controls, heavy drinkers, and subjects with end-stage liver disease (ESLD) attributed to cholestatic liver diseases and nonalcoholic steatohepatitis, decompensated alcohol-associated cirrhosis (AC), and AH. Sphingolipids were quantified by tandem mass spectroscopy. The median plasma EV concentration was significantly higher in AH subjects (5.38 × 1011 /mL) compared to healthy controls (4.38 × 1010 /mL; P < 0.0001), heavy drinkers (1.28 × 1011 /mL; P < 0.0001), ESLD (5.35 × 1010 /mL; P < 0.0001), and decompensated AC (9.2 × 1010 /mL; P < 0.0001) disease controls. Among AH subjects, EV concentration correlated with Model for End-Stage Liver Disease score. When EV counts were dichotomized at the median, survival probability for AH subjects at 90 days was 63.0% in the high-EV group and 90.0% in the low-EV group (log-rank P value = 0.015). Interestingly, EV sphingolipid cargo was significantly enriched in AH when compared to healthy controls, heavy drinkers, ESLD, and decompensated AC (P = 0.0001). Multiple sphingolipids demonstrated good diagnostic and prognostic performance as biomarkers for AH. CONCLUSIONS: Circulating EV concentration and sphingolipid cargo signature can be used in the diagnosis and differentiation of AH from heavy drinkers, decompensated AC, and other etiologies of ESLD and predict 90-day survival permitting dynamic risk profiling.


Assuntos
Alcoolismo/diagnóstico , Doença Hepática Terminal/diagnóstico , Hepatite Alcoólica/diagnóstico , Cirrose Hepática/diagnóstico , Esfingolipídeos/sangue , Adulto , Idoso , Alcoolismo/sangue , Alcoolismo/complicações , Biomarcadores/sangue , Biópsia , Estudos de Casos e Controles , Diagnóstico Diferencial , Doença Hepática Terminal/sangue , Vesículas Extracelulares , Feminino , Hepatite Alcoólica/sangue , Hepatite Alcoólica/epidemiologia , Hepatite Alcoólica/patologia , Humanos , Fígado/patologia , Cirrose Hepática/sangue , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Medição de Risco/métodos , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...