Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 84(3): 514-21, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12558971

RESUMO

The stress response in injured brain is well characterized after experimental ischemic and traumatic brain injury (TBI); however, the induction and regulation of the stress response in humans after TBI remains largely undefined. Accordingly, we examined injured brain tissue from adult patients (n = 8) that underwent emergent surgical decompression after TBI, for alterations in the inducible 72-kDa heat shock protein (Hsp70), the constitutive 73-kDa heat shock protein (Hsc70), and isoforms of the chaperone cofactor BAG-1. Control samples (n = 6) were obtained postmortem from patients dying of causes unrelated to CNS trauma. Western blot analysis showed that Hsp70, but not Hsc70, was increased in patients after TBI versus controls. Both Hsp70 and Hsc70 coimmunoprecipitated with the cofactor BAG-1. The 33 and 46, but not the 50-kDa BAG-1 isoforms were increased in patients after TBI versus controls. The ratio of the 46/33-kDa isoforms was increased in TBI versus controls, suggesting negative modulation of Hsp70/Hsc70 protein refolding activity in injured brain. These data implicate induction of the stress response and its modulation by the chaperone cofactor and Bcl-2 family member BAG-1, after TBI in humans.


Assuntos
Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Traumatismos Craniocerebrais/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Adolescente , Adulto , Idoso , Western Blotting , Encéfalo/patologia , Traumatismos Craniocerebrais/patologia , Proteínas de Ligação a DNA , Feminino , Imunofluorescência , Proteínas de Choque Térmico HSC70 , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP72 , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Precipitina , Isoformas de Proteínas/metabolismo , Fatores de Transcrição
2.
Pediatr Crit Care Med ; 1(1): 4-19, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12813280

RESUMO

OBJECTIVE: To present a state-of-the-art review of mechanisms of secondary injury in the evolution of damage after severe traumatic brain injury in infants and children. DATA SOURCES: We reviewed 152 peer-reviewed publications, 15 abstracts and proceedings, and other material relevant to the study of biochemical, cellular, and molecular mechanisms of damage in traumatic brain injury. Clinical studies of severe traumatic brain injury in infants and children were the focus, but reports in experimental models in immature animals were also considered. Results from both clinical studies in adults and models of traumatic brain injury in adult animals were presented for comparison. DATA SYNTHESIS: Categories of mechanisms defined were those associated with ischemia, excitotoxicity, energy failure, and resultant cell death cascades; secondary cerebral swelling; axonal injury; and inflammation and regeneration. CONCLUSIONS: A constellation of mediators of secondary damage, endogenous neuroprotection, repair, and regeneration are set into motion in the brain after severe traumatic injury. The quantitative contribution of each mediator to outcome, the interplay between these mediators, and the integration of these mechanistic findings with novel imaging methods, bedside physiology, outcome assessment, and therapeutic intervention remain an important target for future research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...