Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chaos ; 33(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37097968

RESUMO

In this paper, we study the dynamics of a vertically emitting micro-cavity operated in the Gires-Tournois regime that contains a semiconductor quantum-well and that is subjected to strong time-delayed optical feedback and detuned optical injection. Using a first principle time-delay model for the optical response, we disclose sets of multistable dark and bright temporal localized states coexisting on their respective bistable homogeneous backgrounds. In the case of anti-resonant optical feedback, we identify square-waves with a period of twice the round-trip in the external cavity. Finally, we perform a multiple time scale analysis in the good cavity limit. The resulting normal form is in good agreement with the original time-delayed model.

2.
Opt Lett ; 47(17): 4343-4346, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048649

RESUMO

We study theoretically the mechanisms of square-wave (SW) formation in vertical external-cavity Kerr-Gires-Tournois interferometers in the presence of anti-resonant injection. We provide simple analytical approximations for their plateau intensities and for the conditions of their emergence. We demonstrate that SWs may appear via a homoclinic snaking scenario, leading to the formation of complex-shaped multistable SW solutions. The resulting SWs can host localized structures and robust bound states.

3.
Opt Lett ; 47(12): 2979-2982, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35709030

RESUMO

We elucidate the mechanisms that underlay the formation of temporal localized states and frequency combs in vertical external-cavity Kerr-Gires-Tournois interferometers. We reduce our first-principles model based upon delay algebraic equations to a minimal pattern formation scenario. It consists in a real cubic Ginzburg-Landau equation modified by high-order effects such as third-order dispersion and nonlinear drift, which are responsible for generating localized states via the locking of domain walls connecting the high and low intensity levels of the injected micro-cavity. We interpret the effective parameters of the normal form in relation with the configuration of the optical setup. Comparing the two models, we observe an excellent agreement close to the onset of bistability.

4.
Chaos ; 32(3): 033102, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35364839

RESUMO

In this paper, we analyze the effect of optical feedback on the dynamics of a passively mode-locked ring laser operating in the regime of temporal localized structures. This laser system is modeled by a set of delay differential equations, which include delay terms associated with the laser cavity and the feedback loop. Using a combination of direct numerical simulations and path-continuation techniques, we show that the feedback loop creates echoes of the main pulse whose position and size strongly depend on the feedback parameters. We demonstrate that in the long-cavity regime, these echoes can successively replace the main pulses, which defines their lifetime. This pulse instability mechanism originates from a global bifurcation of the saddle-node infinite-period type. In addition, we show that, under the influence of noise, the stable pulses exhibit forms of a behavior characteristic of excitable systems. Furthermore, for the harmonic solutions consisting of multiple equispaced pulses per round-trip, we show that if the location of the pulses coincides with the echo of another, the range of stability of these solutions is increased. Finally, it is shown that around these resonances, branches of different solutions are connected by period-doubling bifurcations.

5.
Chaos ; 30(6): 063102, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32611092

RESUMO

In this paper, we analyze the formation and dynamical properties of discrete light bullets in an array of passively mode-locked lasers coupled via evanescent fields in a ring geometry. Using a generic model based upon a system of nearest-neighbor coupled Haus master equations, we show numerically the existence of discrete light bullets for different coupling strengths. In order to reduce the complexity of the analysis, we approximate the full problem by a reduced set of discrete equations governing the dynamics of the transverse profile of the discrete light bullets. This effective theory allows us to perform a detailed bifurcation analysis via path-continuation methods. In particular, we show the existence of multistable branches of discrete localized states, corresponding to different number of active elements in the array. These branches are either independent of each other or are organized into a snaking bifurcation diagram where the width of the discrete localized states grows via a process of successive increase and decrease of the gain. Mechanisms are revealed by which the snaking branches can be created and destroyed as a second parameter, e.g., the linewidth enhancement factor or the coupling strength is varied. For increasing couplings, the existence of moving bright and dark discrete localized states is also demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...