Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurogenom ; 2: 644490, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38235235

RESUMO

The ability to maintain balance is based on various processes of motor control in complex neural networks of subcortical and cortical brain structures. However, knowledge on brain processing during the execution of whole-body balance tasks is still limited. In the present study, we investigated brain activity during slacklining, a task with a high demand on balance capabilities, which is frequently used as supplementary training in various sports disciplines as well as for lower extremity prevention and rehabilitation purposes in clinical settings. We assessed hemodynamic response alterations in sensorimotor brain areas using functional near-infrared spectroscopy (fNIRS) during standing (ST) and walking (WA) on a slackline in 16 advanced slackliners. We expected to observe task-related differences between both conditions as well as associations between cortical activity and slacklining experience. While our results revealed hemodynamic response alterations in sensorimotor brain regions such as primary motor cortex (M1), premotor cortex (PMC), and supplementary motor cortex (SMA) during both conditions, we did not observe differential effects between ST and WA nor associations between cortical activity and slacklining experience. In summary, these findings provide novel insights into brain processing during a whole-body balance task and its relation to balance expertise. As maintaining balance is considered an important prerequisite in daily life and crucial in the context of prevention and rehabilitation, future studies should extend these findings by quantifying brain processing during task execution on a whole-brain level.

2.
PLoS One ; 15(9): e0238318, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32881901

RESUMO

Knowledge on neural processing during complex non-stationary motion sequences of sport-specific movements still remains elusive. Hence, we aimed at investigating hemodynamic response alterations during a basketball slalom dribbling task (BSDT) using multi-distance functional near-infrared spectroscopy (fNIRS) in 23 participants (12 females). Additionally, we quantified how the brain adapts its processing as a function of altered hand use (dominant right hand (DH) vs. non-dominant left hand (NDH) vs. alternating hands (AH)) and pace of execution (slow vs. fast) in BSDT. We found that BSDT activated bilateral premotor cortex (PMC), supplementary motor cortex (SMA), primary motor cortex (M1) as well as inferior parietal cortex and somatosensory association cortex. Slow dominant hand dribbling (DHslow) evoked lower contralateral hemodynamic responses in sensorimotor regions compared to fast dribbling (DHfast). Furthermore, during DHslow dribbling, we found lower hemodynamic responses in ipsilateral M1 as compared to dribbling with alternating hands (AHslow). Hence, altered task complexity during BSDT induced differential hemodynamic response patterns. Furthermore, a correlation analysis revealed that lower levels of perceived task complexity are associated with lower hemodynamic responses in ipsilateral PMC-SMA, which is an indicator for neuronal efficiency in participants with better basketball dribbling skills. The present study extends previous findings by showing that varying levels of task complexity are reflected by specific hemodynamic response alterations even during sports-relevant motor behavior. Taken together, we suggest that quantifying brain activation during complex movements is a prerequisite for assessing brain-behavior relations and optimizing motor performance.


Assuntos
Encéfalo/fisiologia , Hemodinâmica , Adulto , Basquetebol , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Lateralidade Funcional/fisiologia , Hemoglobinas/química , Humanos , Masculino , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho , Adulto Jovem
3.
BMC Neurosci ; 21(1): 26, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32487077

RESUMO

BACKGROUND: Motor fatigability describes a phenomenon that occurs when exhaustive exercise or physically demanding tasks are executed over an extended period of time. Concerning fast repetitive movements, it is noticeable by a reduction in movement speed (motor slowing, MoSlo) and occurs due to both central and peripheral factors. The aim of the present study was to examine the presence of MoSlo during hand- (HTT) and foot-tapping tasks (FTT) comparing trained football (FB) and handball players (HB) and non-athletes (NA). Furthermore, we were interested in how far anodal transcranial direct current stimulation (tDCS) might be capable of modulating MoSlo as compared to sham. METHODS: A total number of 46 participants were enrolled in a sham-controlled, double-blinded, cross-over study. HTT and FTT were performed before, during, after as well as 30 min after 20 min of tDCS over the leg area of the primary motor cortex (M1). RESULTS: We could demonstrate that MoSlo during HTT and FTT is a general phenomenon that is observed independent of the type of sports and/or training status. Furthermore, we were able to show a tDCS-induced reduction in MoSlo specifically during FTT in both trained athletes and NA. No such effects could be observed for HTT, indicating local specificity of tDCS-induced effects on a behavioral level. CONCLUSION: We could demonstrate that tDCS is capable of reducing motor fatigability during fast repetitive movements. These findings are of pivotal interest for many sports where fatigability resistance is a limiting factor in maintaining repetitive movement patterns.


Assuntos
Potencial Evocado Motor/fisiologia , Mãos/fisiologia , Córtex Motor/fisiologia , Estimulação Transcraniana por Corrente Contínua , Adulto , Atletas , Estudos Cross-Over , Feminino , Humanos , Aprendizagem/fisiologia , Masculino , Estimulação Magnética Transcraniana/métodos , Adulto Jovem
4.
Front Hum Neurosci ; 14: 133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32327988

RESUMO

Enhancing performance levels of athletes during training and competition is a desired goal in sports. Quantifying training success is typically accompanied by performance diagnostics including the assessment of sports-relevant behavioral and physiological parameters. Even though optimal brain processing is a key factor for augmented motor performance and skill learning, neurodiagnostics is typically not implemented in performance diagnostics of athletes. We propose, that neurodiagnostics via non-invasive brain imaging techniques such as functional near-infrared spectroscopy (fNIRS) will offer novel perspectives to quantify training-induced neuroplasticity and its relation to motor behavior. A better understanding of such a brain-behavior relationship during the execution of sport-specific movements might help to guide training processes and to optimize training outcomes. Furthermore, targeted non-invasive brain stimulation such as transcranial direct current stimulation (tDCS) might help to further enhance training outcomes by modulating brain areas that show training-induced neuroplasticity. However, we strongly suggest that ethical aspects in the use of non-invasive brain stimulation during training and/or competition need to be addressed before neuromodulation can be considered as a performance enhancer in sports.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...