Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 147(3): 034506, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28734291

RESUMO

Above its glass transition, the equilibrated high-density amorphous ice (HDA) transforms to the low-density pendant (LDA). The temperature dependence of the transformation is monitored at ambient pressure using dielectric spectroscopy and at elevated pressures using dilatometry. It is found that near the glass transition temperature of deuterated samples, the transformation kinetics is 300 times slower than the structural relaxation, while for protonated samples, the time scale separation is at least 30 000 and insensitive to doping. The kinetics of the HDA to LDA transformation lacks a proton/deuteron isotope effect, revealing that this process is dominated by the restructuring of the oxygen network. The x-ray diffraction experiments performed on samples at intermediate transition stages reflect a linear combination of the LDA and HDA patterns implying a macroscopic phase separation, instead of a local intermixing of the two amorphous states.

2.
J Non Cryst Solids ; 407: 423-430, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25641986

RESUMO

There has been a long controversy regarding the glass transition in low-density amorphous ice (LDA). The central question is whether or not it transforms to an ultraviscous liquid state above 136 K at ambient pressure prior to crystallization. Currently, the most widespread interpretation of the experimental findings is in terms of a transformation to a superstrong liquid above 136 K. In the last decade some work has also been devoted to the study of the glass transition in high-density amorphous ice (HDA) which is in the focus of the present review. At ambient pressure HDA is metastable against both ice I and LDA, whereas at > 0.2 GPa HDA is no longer metastable against LDA, but merely against high-pressure forms of crystalline ice. The first experimental observation interpreted as the glass transition of HDA was made using in situ methods by Mishima, who reported a glass transition temperature Tg of 160 K at 0.40 GPa. Soon thereafter Andersson and Inaba reported a much lower glass transition temperature of 122 K at 1.0 GPa. Based on the pressure dependence of HDA's Tg measured in Innsbruck, we suggest that they were in fact probing the distinct glass transition of very high-density amorphous ice (VHDA). Very recently the glass transition in HDA was also observed at ambient pressure at 116 K. That is, LDA and HDA show two distinct glass transitions, clearly separated by about 20 K at ambient pressure. In summary, this suggests that three glass transition lines can be defined in the p-T plane for LDA, HDA, and VHDA.

3.
J Chem Phys ; 140(13): 134504, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24712798

RESUMO

High-density amorphous water is simulated by use of isothermal-isobaric molecular dynamics at a pressure of 0.3 GPa making use of several water models (SPC/E, TIP3P, TIP4P variants, and TIP5P). Heating/cooling cycles are performed in the temperature range 80-280 K and quantities like density, total energy, and mobility are analysed. Raw data as well as the glass transition temperatures Tg observed in our studies depend on the water model used as well as on the treatment of intramolecular bonds and angles. However, a clear-cut evidence for the occurrence of a glass-to-liquid transition is found in all cases. Thus, all models indicate that high-density amorphous ice found experimentally may be a low-temperature proxy of an ultraviscous high-density liquid.

4.
Proc Natl Acad Sci U S A ; 110(44): 17720-5, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24101518

RESUMO

The glassy states of water are of common interest as the majority of H2O in space is in the glassy state and especially because a proper description of this phenomenon is considered to be the key to our understanding why liquid water shows exceptional properties, different from all other liquids. The occurrence of water's calorimetric glass transition of low-density amorphous ice at 136 K has been discussed controversially for many years because its calorimetric signature is very feeble. Here, we report that high-density amorphous ice at ambient pressure shows a distinct calorimetric glass transitions at 116 K and present evidence that this second glass transition involves liquid-like translational mobility of water molecules. This "double Tg scenario" is related to the coexistence of two liquid phases. The calorimetric signature of the second glass transition is much less feeble, with a heat capacity increase at Tg,2 about five times as large as at Tg,1. By using broadband-dielectric spectroscopy we resolve loss peaks yielding relaxation times near 100 s at 126 K for low-density amorphous ice and at 110 K for high-density amorphous ice as signatures of these two distinct glass transitions. Temperature-dependent dielectric data and heating-rate-dependent calorimetric data allow us to construct the relaxation map for the two distinct phases of water and to extract fragility indices m = 14 for the low-density and m = 20-25 for the high-density liquid. Thus, low-density liquid is classified as the strongest of all liquids known ("superstrong"), and also high-density liquid is classified as a strong liquid.


Assuntos
Congelamento , Modelos Químicos , Transição de Fase , Água/química , Calorimetria , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
5.
Phys Rev Lett ; 108(22): 225901, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23003624

RESUMO

Amorphous water plays a fundamental role in astrophysics, cryoelectron microscopy, hydration of matter, and our understanding of anomalous liquid water properties. Yet, the characteristics of the relaxation processes taking place in high-density amorphous ice (HDA) are unknown. We here reveal that the relaxation processes in HDA at 110-135 K at 0.1-0.2 GPa are of collective and global nature, resembling the alpha relaxation in glassy material. Measured relaxation times suggest liquid-like relaxation characteristics in the vicinity of the crystallization temperature at 145 K. By carefully relaxing pressurized HDA for several hours at 135 K, we produce a state that is closer to the ideal glass state than all HDA states discussed so far in literature.

8.
Phys Chem Chem Phys ; 13(19): 8783-94, 2011 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-21431195

RESUMO

Many acronyms are used in the literature for describing different kinds of amorphous ice, mainly because many different preparation routes and many different sample histories need to be distinguished. We here introduce these amorphous ices and discuss the question of how many of these forms are of relevance in the context of polyamorphism. We employ the criterion of reversible transitions between amorphous "states" in finite intervals of pressure and temperature to discriminate between independent metastable amorphous "states" and between "substates" of the same amorphous "state". We argue that the experimental evidence suggests we should consider there to be three polyamorphic "states" of ice, namely low-(LDA), high-(HDA) and very high-density amorphous ice (VHDA). In addition to the realization of reversible transitions between them, they differ in terms of their properties, e.g., compressibility, or number of "interstitial" water molecules. Thus they cannot be regarded as structurally relaxed variants of each other and so we suggest considering them as three distinct megabasins in an energy landscape visualization.


Assuntos
Gelo , Pressão , Temperatura
10.
J Chem Phys ; 129(23): 234305, 2008 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-19102530

RESUMO

The authors introduce and describe pulse train control (PTC) of population branching in strongly coupled processes as a novel control tool for the separation of competing multiphoton processes. Control strategies are presented based on the different responses of processes with different photonicities and/or different frequency detunings to the pulse-to-pulse time delay and the pulse-to-pulse phase shift in pulse trains. The control efficiency is further enhanced by the property of pulse trains that complete population transfer can be obtained over an extended frequency range that replaces the resonance frequency of simple pulses. The possibility to freely tune the frequency assists the separation of the competing processes and reduces the number of subpulses required for full control. As a sample application, PTC of leaking multiphoton resonances is demonstrated by numerical simulations. In model systems exhibiting sizable background (intruder) state population if excited with single pulses, PTC leading to complete accumulation of population in the target state and elimination of background population is readily achieved. The analysis of the results reveals different mechanisms of control and provides clues on the mechanisms of the leaking process itself. In an alternative setup, pulse trains can be used as a phase-sensitive tool for level switching. By changing only the pulse-to-pulse phase shift of a train with otherwise unchanged parameters, population can be transferred to any of two different target states in a near-quantitative manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...