Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 107: 1-11, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28736299

RESUMO

N-acetylglucosamine (GlcNAc) is the monomer of the polysaccharide chitin, an essential structural component of the fungal cell wall and the arthropod exoskeleton. We recently showed that the genes encoding the enzymes for GlcNAc catabolism are clustered in several ascomycetes. In the present study we tested these fungi for growth on GlcNAc and chitin. All fungi, containing the GlcNAc gene cluster, could grow on GlcNAc with the exception of four independent Neurospora crassa wild-type isolates, which were however able to grow on chitin. GlcNAc even inhibited their growth in the presence of other carbon sources. Genes involved in GlcNAc catabolism were strongly upregulated in the presence of GlcNAc, but during growth on chitin their expression was not increased. Deletion of hxk-3 (encoding the first catabolic enzyme, GlcNAc-hexokinase) and ngt-1 (encoding the GlcNAc transporter) improved growth of N. crassa on GlcNAc in the presence of glycerol. A crucial step in GlcNAc catabolism is enzymatic conversion from glucosamine-6-phosphate to fructose-6-phosphate, catalyzed by the glucosamine-6-phosphate deaminase, DAM-1. To assess, if DAM-1 is compromised in N. crassa, the orthologue from Trichoderma reesei, Trdam1, was expressed in N. crassa. Trdam1 expression partially alleviated the negative effects of GlcNAc in the presence of a second carbon source, but did not fully restore growth on GlcNAc. Our results indicate that the GlcNAc-catabolism pathway is bypassed during growth of N. crassa on chitin by use of an alternative pathway, emphasizing the different strategies that have evolved in the fungal kingdom for chitin utilization.


Assuntos
Acetilglucosamina/metabolismo , Quitina/metabolismo , Neurospora crassa/crescimento & desenvolvimento , Neurospora crassa/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Hexoquinase/genética , Hexoquinase/metabolismo , Redes e Vias Metabólicas/genética , Família Multigênica , Neurospora crassa/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo
2.
Appl Microbiol Biotechnol ; 101(10): 4139-4149, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28229208

RESUMO

Trichoderma reesei is a paradigm for the regulation and industrial production of plant cell wall-degrading enzymes. Among these, five xylanases, including the glycoside hydrolase (GH) family 11 XYN1 and XYN2, the GH10 XYN3, and the GH30 XYN4 and XYN6, were described. By genome mining and transcriptome analysis, a further putative xylanase, encoded by xyn5, was identified. Analysis of xyn5 from the genome-sequenced reference strain T. reesei QM6a shows that it encodes a non-functional, truncated form of XYN5. However, non-truncated orthologues are present in other genome sequenced Trichoderma spp., and sequencing of xyn5 in other T. reesei wild-type isolates shows that they harbor a putative functional xyn5 allele. In silico analysis and 3D modeling revealed that the encoded XYN5 has significant structural similarities to xylanases of the GH11 family, including a GH-typical substrate binding groove and a carboxylate pair in the active site. The xyn5 of wild-type strain TUCIM1282 was recombinantly expressed in a T. reesei strain with a (hemi)cellulase-free background and the corresponding protein purified to apparent homogeneity. The pH and temperature optima and the kinetic parameters of the purified XYN5 were pH 4, 50 °C, and V max = 2646 nkat/mg with a K m of 9.68 mg/ml. This functional xyn5 allele was used to replace the mutated version which led to an overall increase of the xylanolytic activity. These findings are of particular importance as GH11 xylanases are of high biotechnological relevance, and T. reesei is one of the main industrial producers of such lignocellulose-degrading enzymes.


Assuntos
Alelos , Endo-1,4-beta-Xilanases/genética , Trichoderma/enzimologia , Trichoderma/genética , Biocombustíveis , Celulase/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genótipo , Concentração de Íons de Hidrogênio , Cinética , Conformação Molecular , Análise de Sequência de DNA , Trichoderma/classificação , Xilosidases/metabolismo
3.
Phytopathology ; 107(5): 537-544, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28095207

RESUMO

Trichoderma spp. are opportunistic fungi some of which are commonly present in the rhizosphere. Several species, such as T. virens, are also efficient biocontrol agents against phytopathogenic fungi and exert beneficial effects on plants. These effects are the consequence of interactions between Trichoderma and plant roots, which trigger enhanced plant growth and induce plant resistance. We have previously shown that T. virens I10 expresses two endopolygalacturonase genes, tvpg1 and tvpg2, during the interaction with plant roots; tvpg1 is inducible while tvpg2 is constitutively transcribed. Using the same system, the tomato polygalacturonase-inhibitor gene Lepgip1 was induced at the same time as tvpg1. Here we show by gene disruption that TvPG2 performs a regulatory role on the inducible tvpg1 gene and in triggering the plant immune response. A tvpg2-knockout strain fails to transcribe the inducible tvpg1 gene in neither in vitro in inducing media containing pectin or plant cell walls, nor during the in vivo interaction with tomato roots. Likewise, the in vivo induction of Lepgip1 does not occur, and its defense against the pathogen Botrytis cinerea is significantly reduced. Our data prove the importance of a T. virens constitutively produced endopolygalacturonase in eliciting plant induced systemic resistance against pathogenic fungi.


Assuntos
Botrytis/fisiologia , Resistência à Doença , Doenças das Plantas/microbiologia , Poligalacturonase/antagonistas & inibidores , Solanum lycopersicum/microbiologia , Trichoderma/enzimologia , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Solanum lycopersicum/imunologia , Doenças das Plantas/imunologia , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Poligalacturonase/genética , Poligalacturonase/metabolismo , Genética Reversa , Trichoderma/genética
4.
Microbiol Mol Biol Rev ; 80(1): 205-327, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26864432

RESUMO

The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.


Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Processamento de Proteína Pós-Traducional , Trichoderma/genética , Montagem e Desmontagem da Cromatina , Proteínas Fúngicas/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Redes e Vias Metabólicas/genética , Filogenia , Estrutura Terciária de Proteína , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Trichoderma/classificação , Trichoderma/metabolismo
5.
Mol Microbiol ; 99(4): 640-57, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26481444

RESUMO

Chitin is an important structural constituent of fungal cell walls composed of N-acetylglucosamine (GlcNAc) monosaccharides, but catabolism of GlcNAc has not been studied in filamentous fungi so far. In the yeast Candida albicans, the genes encoding the three enzymes responsible for stepwise conversion of GlcNAc to fructose-6-phosphate are clustered. In this work, we analysed GlcNAc catabolism in ascomycete filamentous fungi and found that the respective genes are also clustered in these fungi. In contrast to C. albicans, the cluster often contains a gene for an Ndt80-like transcription factor, which we named RON1 (regulator of N-acetylglucosamine catabolism 1). Further, a gene for a glycoside hydrolase 3 protein related to bacterial N-acetylglucosaminidases can be found in the GlcNAc gene cluster in filamentous fungi. Functional analysis in Trichoderma reesei showed that the transcription factor RON1 is a key activator of the GlcNAc gene cluster and essential for GlcNAc catabolism. Furthermore, we present an evolutionary analysis of Ndt80-like proteins in Ascomycota. All GlcNAc cluster genes, as well as the GlcNAc transporter gene ngt1, and an additional transcriptional regulator gene, csp2, encoding the homolog of Neurospora crassa CSP2/GRHL, were functionally characterised by gene expression analysis and phenotypic characterisation of knockout strains in T. reesei.


Assuntos
Acetilglucosamina/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Família Multigênica , Fatores de Transcrição/metabolismo , Trichoderma/genética , Ascomicetos/genética , Candida albicans/genética , Quitina/metabolismo , Proteínas Fúngicas/genética , Genes Fúngicos , Neurospora crassa/genética , Fatores de Transcrição/genética , Regulação para Cima
6.
BMC Microbiol ; 15: 2, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25591782

RESUMO

BACKGROUND: The proteins Sm1 and Sm2 from the biocontrol fungus Trichoderma virens belong to the cerato-platanin protein family. Members of this family are small, secreted proteins that are abundantly produced by filamentous fungi with all types of life-styles. Some species of the fungal genus Trichoderma are considered as biocontrol fungi because they are mycoparasites and are also able to directly interact with plants, thereby stimulating plant defense responses. It was previously shown that the cerato-platanin protein Sm1 from T. virens - and to a lesser extent its homologue Epl1 from Trichoderma atroviride - induce plant defense responses. The plant protection potential of other members of the cerato-platanin protein family in Trichoderma, however, has not yet been investigated. RESULTS: In order to analyze the function of the cerato-platanin protein Sm2, sm1 and sm2 knockout strains were generated and characterized. The effect of the lack of Sm1 and Sm2 in T. virens on inducing systemic resistance in maize seedlings, challenged with the plant pathogen Cochliobolus heterostrophus, was tested. These plant experiments were also performed with T. atroviride epl1 and epl2 knockout strains. In our plant-pathogen system T. virens was a more effective plant protectant than T. atroviride and the results with both Trichoderma species showed concordantly that the level of plant protection was more strongly reduced in plants treated with the sm2/epl2 knockout strains than with sm1/epl1 knockout strains. CONCLUSIONS: Although the cerato-platanin genes sm1/epl1 are more abundantly expressed than sm2/epl2 during fungal growth, Sm2/Epl2 are, interestingly, more important than Sm1/Epl1 for the promotion of plant protection conferred by Trichoderma in the maize-C. heterostrophus pathosystem.


Assuntos
Proteínas Fúngicas/metabolismo , Raízes de Plantas/microbiologia , Trichoderma/crescimento & desenvolvimento , Trichoderma/metabolismo , Zea mays/imunologia , Zea mays/microbiologia , Proteínas Fúngicas/genética , Técnicas de Inativação de Genes , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Plântula/imunologia , Plântula/microbiologia , Trichoderma/genética
7.
Curr Genet ; 61(2): 103-13, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25589417

RESUMO

LysM motifs are carbohydrate-binding modules found in prokaryotes and eukaryotes. They bind to N-acetylglucosamine-containing carbohydrates, such as chitin, chitio-oligosaccharides and peptidoglycan. In this review, we summarize the features of the protein architecture of LysM-containing proteins in fungi and discuss their so far known biochemical properties, transcriptional profiles and biological functions. Further, based on data from evolutionary analyses and consensus pattern profiling of fungal LysM motifs, we show that they can be classified into a fungal-specific group and a fungal/bacterial group. This facilitates the classification and selection of further LysM proteins for detailed analyses and will contribute to widening our understanding of the functional spectrum of this protein family in fungi. Fungal LysM motifs are predominantly found in subgroup C chitinases and in LysM effector proteins, which are secreted proteins with LysM motifs but no catalytic domains. In enzymes, LysM motifs mediate the attachment to insoluble carbon sources. In plants, receptors containing LysM motifs are responsible for the perception of chitin-oligosaccharides and are involved in beneficial symbiotic interactions between plants and bacteria or fungi, as well as plant defence responses. In plant pathogenic fungi, LysM effector proteins have already been shown to have important functions in the dampening of host defence responses as well as protective functions of fungal hyphae against chitinases. However, the large number and diversity of proteins with LysM motifs that are being unravelled in fungal genome sequencing projects suggest that the functional repertoire of LysM effector proteins in fungi is only partially discovered so far.


Assuntos
Amidoidrolases/genética , Quitina/metabolismo , Quitinases/genética , Fungos/metabolismo , Acetilglucosamina/metabolismo , Amidoidrolases/metabolismo , Motivos de Aminoácidos/genética , Quitina/química , Quitina/genética , Quitinases/química , Fungos/genética , Variação Genética , Genoma Fúngico , Hifas/genética , Proteínas de Plantas , Ligação Proteica
8.
Mol Microbiol ; 96(2): 405-18, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25626518

RESUMO

The ascomycete Trichoderma reesei is an industrial producer of cellulolytic and hemicellulolytic enzymes, and serves as a prime model for their genetic regulation. Most of its (hemi-)cellulolytic enzymes are obligatorily dependent on the transcriptional activator XYR1. Here, we investigated the nucleo-cytoplasmic shuttling mechanism that transports XYR1 across the nuclear pore complex. We identified 14 karyopherins in T. reesei, of which eight were predicted to be involved in nuclear import, and produced single gene-deletion mutants of all. We found KAP8, an ortholog of Aspergillus nidulans KapI, and Saccharomyces cerevisiae Kap121/Pse1, to be essential for nuclear recruitment of GFP-XYR1 and cellulase gene expression. Transformation with the native gene rescued this effect. Transcriptomic analyses of Δkap8 revealed that under cellulase-inducing conditions 42 CAZymes, including all cellulases and hemicellulases known to be under XYR1 control, were significantly down-regulated. Δkap8 strains were capable of forming fertile fruiting bodies but exhibited strongly reduced conidiation both in light and darkness, and showed enhanced sensitivity towards abiotic stress, including high osmotic pressure, low pH and high temperature. Together, these data underscore the significance of nuclear import of XYR1 in cellulase and hemicellulase gene regulation in T. reesei, and identify KAP8 as the major karyopherin required for this process.


Assuntos
Núcleo Celular/metabolismo , Celulase/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Esporos Fúngicos/crescimento & desenvolvimento , Trichoderma/metabolismo , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/enzimologia , Núcleo Celular/genética , Celulase/metabolismo , Proteínas Fúngicas/genética , Transporte Proteico , Reprodução Assexuada , Esporos Fúngicos/enzimologia , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Trichoderma/enzimologia , Trichoderma/genética , Trichoderma/crescimento & desenvolvimento , beta Carioferinas/genética
9.
Plant Sci ; 228: 79-87, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25438788

RESUMO

Cerato-platanins are an interesting group of small, secreted, cysteine-rich proteins that have been implicated in virulence of certain plant pathogenic fungi. The relatively recent discovery of these proteins in plant beneficial fungi like Trichoderma spp., and their positive role in induction of defense in plants against invading pathogens has raised the question as to whether these proteins are effectors or elicitor molecules. Here we present a comprehensive review on the occurrence of these conserved proteins across the fungal kingdom, their structure-function relationships, and their physiological roles in plant pathogenic and symbiotic fungi. We also discuss the usefulness of these proteins in evolving strategies for crop protection through a transgenic approach or direct application as elicitors.


Assuntos
Proteínas Fúngicas/fisiologia , Plantas/microbiologia , Sequência de Aminoácidos , Proteínas Fúngicas/química , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Controle Biológico de Vetores , Relação Estrutura-Atividade , Simbiose
10.
Mol Microbiol ; 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25302561

RESUMO

Trichoderma reesei is a model for investigating the regulation of (hemi-)cellulase gene expression. Cellulases are formed adaptively, and the transcriptional activator XYR1 and the carbon catabolite repressor CRE1 are main regulators of their expression. We quantified the nucleo-cytoplasmic shuttling dynamics of GFP-fusion proteins of both transcription factors under cellulase and xylanase inducing conditions, and correlated their nuclear presence/absence with transcriptional changes. We also compared their subcellular localization in conidial germlings and mature hyphae. We show that cellulase gene expression requires de novo biosynthesis of XYR1 and its simultaneous nuclear import, whereas carbon catabolite repression is regulated through preformed CRE1 imported from the cytoplasmic pool. Termination of induction immediately stopped cellulase gene transcription and was accompanied by rapid nuclear degradation of XYR1. In contrast, nuclear CRE1 rapidly decreased upon glucose depletion, and became recycled into the cytoplasm. In mature hyphae, nuclei containing activated XYR1 were concentrated in the colony center, indicating that this is the main region of XYR1 synthesis and cellulase transcription. CRE1 was found to be evenly distributed throughout the entire mycelium. Taken together, our data revealed novel aspects of the dynamic shuttling and spatial bias of the major regulator of (hemi-)cellulase gene expression, XYR1, in T. reesei.

11.
Appl Microbiol Biotechnol ; 98(11): 4795-803, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24687753

RESUMO

Cerato-platanin proteins are small, secreted proteins with four conserved cysteines that are abundantly produced by filamentous fungi with all types of lifestyles. These proteins appear to be readily recognized by other organisms and are therefore important factors in interactions of fungi with other organisms, e.g. by stimulating the induction of defence responses in plants. However, it is not known yet whether the main function of cerato-platanin proteins is associated with these fungal interactions or rather a role in fungal growth and development. Cerato-platanin proteins seem to unify several biochemical properties that are not found in this combination in other proteins. On one hand, cerato-platanins are carbohydrate-binding proteins and are able to bind to chitin and N-acetylglucosamine oligosaccharides; on the other hand, they are able to self-assemble at hydrophobic/hydrophilic interfaces and form protein layers, e.g. on the surface of aqueous solutions, thereby altering the polarity of solutions and surfaces. The latter property is reminiscent of hydrophobins, which are also small, secreted fungal proteins, but interestingly, the surface-activity-altering properties of cerato-platanins are the opposite of what can be observed for hydrophobins. The so far known biochemical properties of cerato-platanin proteins are summarized in this review, and potential biotechnological applications as well as implications of these properties for the biological functions of cerato-platanin proteins are discussed.


Assuntos
Proteínas Fúngicas/metabolismo , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Receptores de Superfície Celular/metabolismo , Metabolismo dos Carboidratos , Multimerização Proteica
12.
BMC Genomics ; 14: 121, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23432824

RESUMO

BACKGROUND: Trichoderma is a genus of mycotrophic filamentous fungi (teleomorph Hypocrea) which possess a bright variety of biotrophic and saprotrophic lifestyles. The ability to parasitize and/or kill other fungi (mycoparasitism) is used in plant protection against soil-borne fungal diseases (biological control, or biocontrol). To investigate mechanisms of mycoparasitism, we compared the transcriptional responses of cosmopolitan opportunistic species and powerful biocontrol agents Trichoderma atroviride and T. virens with tropical ecologically restricted species T. reesei during confrontations with a plant pathogenic fungus Rhizoctonia solani. RESULTS: The three Trichoderma spp. exhibited a strikingly different transcriptomic response already before physical contact with alien hyphae. T. atroviride expressed an array of genes involved in production of secondary metabolites, GH16 ß-glucanases, various proteases and small secreted cysteine rich proteins. T. virens, on the other hand, expressed mainly the genes for biosynthesis of gliotoxin, respective precursors and also glutathione, which is necessary for gliotoxin biosynthesis. In contrast, T. reesei increased the expression of genes encoding cellulases and hemicellulases, and of the genes involved in solute transport. The majority of differentially regulated genes were orthologues present in all three species or both in T. atroviride and T. virens, indicating that the regulation of expression of these genes is different in the three Trichoderma spp. The genes expressed in all three fungi exhibited a nonrandom genomic distribution, indicating a possibility for their regulation via chromatin modification. CONCLUSION: This genome-wide expression study demonstrates that the initial Trichoderma mycotrophy has differentiated into several alternative ecological strategies ranging from parasitism to predation and saprotrophy. It provides first insights into the mechanisms of interactions between Trichoderma and other fungi that may be exploited for further development of biofungicides.


Assuntos
Perfilação da Expressão Gênica , Interações Microbianas/genética , Trichoderma/genética , Trichoderma/fisiologia , Regulação para Baixo , Genes Fúngicos/genética , Análise de Sequência com Séries de Oligonucleotídeos , Rhizoctonia/fisiologia , Regulação para Cima
13.
FEBS J ; 280(5): 1226-36, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23289754

RESUMO

LysM motifs are carbohydrate-binding modules found in prokaryotes and eukaryotes. They have general N-acetylglucosamine binding properties and therefore bind to chitin and related carbohydrates. In plants, plasma-membrane-bound proteins containing LysM motifs are involved in plant defence responses, but also in symbiotic interactions between plants and microorganisms. Filamentous fungi secrete LysM proteins that contain several LysM motifs but no enzymatic modules. In plant pathogenic fungi, for LysM proteins roles in dampening of plant defence responses and protection from plant chitinases were shown. In this study, the carbohydrate-binding specificities and biological function of the LysM protein TAL6 from the plant-beneficial fungus Trichoderma atroviride were investigated. TAL6 contains seven LysM motifs and the sequences of its LysM motifs are very different from other fungal LysM proteins investigated so far. The results showed that TAL6 bound to some forms of polymeric chitin, but not to chito-oligosaccharides. Further, no binding to fungal cell wall preparations was detected. Despite these rather weak carbohydrate-binding properties, a strong inhibitory effect of TAL6 on spore germination was found. TAL6 was shown to specifically inhibit germination of Trichoderma spp., but interestingly not of other fungi. Thus, this protein is involved in self-signalling processes during fungal growth rather than fungal-plant interactions. These data expand the functional repertoire of fungal LysM proteins beyond effectors in plant defence responses and show that fungal LysM proteins are also involved in the self-regulation of fungal growth and development.


Assuntos
Quitina/metabolismo , Quitinases/metabolismo , Proteínas Fúngicas/metabolismo , Trichoderma/metabolismo , Sequência de Aminoácidos , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Esporos Bacterianos/genética , Trichoderma/crescimento & desenvolvimento
14.
J Biol Chem ; 288(6): 4278-87, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23250741

RESUMO

The protein EPL1 from the fungus Trichoderma atroviride belongs to the cerato-platanin protein family. These proteins occur only in filamentous fungi and are associated with the induction of defense responses in plants and allergic reactions in humans. However, fungi with other lifestyles also express cerato-platanin proteins, and the primary function of this protein family has not yet been elucidated. In this study, we investigated the biochemical properties of the cerato-platanin protein EPL1 from T. atroviride. Our results showed that EPL1 readily self-assembles at air/water interfaces and forms protein layers that can be redissolved in water. These properties are reminiscent of hydrophobins, which are amphiphilic fungal proteins that accumulate at interfaces. Atomic force microscopy imaging showed that EPL1 assembles into irregular meshwork-like substructures. Furthermore, surface activity measurements with EPL1 revealed that, in contrast to hydrophobins, EPL1 increases the polarity of aqueous solutions and surfaces. In addition, EPL1 was found to bind to various forms of polymeric chitin. The T. atroviride genome contains three epl genes. epl1 was predominantly expressed during hyphal growth, whereas epl2 was mainly expressed during spore formation, suggesting that the respective proteins are involved in different biological processes. For epl3, no gene expression was detected under most growth conditions. Single and double gene knock-out strains of epl1 and epl2 did not reveal a detectable phenotype, showing that these proteins are not essential for fungal growth and development despite their abundant expression.


Assuntos
Proteínas Fúngicas/metabolismo , Multimerização Proteica/fisiologia , Trichoderma/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Genoma Fúngico/fisiologia , Estrutura Quaternária de Proteína , Trichoderma/química , Trichoderma/genética
15.
Appl Environ Microbiol ; 78(7): 2168-78, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22286997

RESUMO

The cyclic AMP (cAMP) pathway represents a central signaling cascade with crucial functions in all organisms. Previous studies of Trichoderma reesei (anamorph of Hypocrea jecorina) suggested a function of cAMP signaling in regulation of cellulase gene expression. We were therefore interested in how the crucial components of this pathway, adenylate cyclase (ACY1) and cAMP-dependent protein kinase A (PKA), would affect cellulase gene expression. We found that both ACY1 and PKA catalytic subunit 1 (PKAC1) are involved in regulation of vegetative growth but are not essential for sexual development. Interestingly, our results showed considerably increased transcript abundance of cellulase genes in darkness compared to light (light responsiveness) upon growth on lactose. This effect is strongly enhanced in mutant strains lacking PKAC1 or ACY1. Comparison to the wild type showed that ACY1 has a consistently positive effect on cellulase gene expression in light and darkness, while PKAC1 influences transcript levels of cellulase genes positively in light but negatively in darkness. A function of PKAC1 in light-modulated cellulase gene regulation is also reflected by altered complex formation within the cel6a/cbh2 promoter in light and darkness and in the absence of pkac1. Analysis of transcript levels of cellulase regulator genes indicates that the regulatory output of the cAMP pathway may be established via adjustment of XYR1 abundance. Consequently, both adenylate cyclase and protein kinase A are involved in light-modulated cellulase gene expression in T. reesei and have a dampening effect on the light responsiveness of this process.


Assuntos
Adenilil Ciclases/metabolismo , Celulase/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Fúngica da Expressão Gênica , Luz , Trichoderma/enzimologia , Adenilil Ciclases/genética , Celulase/genética , Meios de Cultura , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Escuridão , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Lactose/metabolismo , Mutação , Transdução de Sinais , Trichoderma/genética , Trichoderma/crescimento & desenvolvimento , Trichoderma/fisiologia
16.
Appl Microbiol Biotechnol ; 93(2): 533-43, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22134638

RESUMO

Chitin derivatives, chitosan and substituted chito-oligosaccharides have a wide spectrum of applications ranging from medicine to cosmetics and dietary supplements. With advancing knowledge about the substrate-binding properties of chitinases, enzyme-based production of these biotechnologically relevant sugars from biological resources is becoming increasingly interesting. Fungi have high numbers of glycoside hydrolase family 18 chitinases with different substrate-binding site architectures. As presented in this review, the large diversity of fungal chitinases is an interesting starting point for protein engineering. In this review, recent data about the architecture of the substrate-binding clefts of fungal chitinases, in connection with their hydrolytic and transglycolytic abilities, and the development of chitinase inhibitors are summarized. Furthermore, the biological functions of chitinases, chitin and chitosan utilization by fungi, and the effects of these aspects on biotechnological applications, including protein overexpression and autolysis during industrial processes, are discussed in this review.


Assuntos
Biotecnologia/métodos , Quitinases/metabolismo , Fungos/enzimologia , Variação Genética , Sítios de Ligação , Quitinases/química , Quitinases/genética , Fungos/genética , Especificidade por Substrato
17.
Microbiology (Reading) ; 158(Pt 1): 26-34, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21873410

RESUMO

Lysis of the prey's cell wall is one of the key steps during mycoparasitism. Genome analysis of two mycoparasitic Trichoderma species, T. atroviride and T. virens, revealed an expanded arsenal of genes encoding enzymes potentially involved in cell wall hydrolysis. Glycoside hydrolase family 18, which contains all fungal chitinases, is the largest family of carbohydrate-active enzymes in mycoparasitic Trichoderma species. However, in addition to their aggressive functions during mycoparasitism, the roles of chitinases and other cell wall degrading enzymes also include remodelling and recycling of the fungus's own cell wall. In this review we discuss current knowledge about fungal cell wall degrading enzymes in Trichoderma and how the fungus distinguishes between self- and non-self fungal cell wall degradation. In the past few years, the chitinolytic enzyme machinery of Trichoderma has been used as a model system to address this question. Gene expression profiles of most investigated chitinases indicate an overlap of functions of the respective enzymes and an involvement in both self- and non-self fungal cell wall degradation. Similar sets of enzymes appear to be involved in mycoparasitism, exogenous chitin decomposition and recycling of the fungus's own cell wall. Thus, we hypothesize that the regulation of self and non-self fungal cell wall degradation is not due to a speciation of individual chitinases. Rather, we hypothesize that it is regulated by substrate accessibility due to cell wall protection in healthy hyphae vs deprotection during mycoparasitic attack, hyphal ageing and autolysis.


Assuntos
Parede Celular/metabolismo , Trichoderma/metabolismo , Parede Celular/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Trichoderma/genética
18.
Nat Rev Microbiol ; 9(10): 749-59, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21921934

RESUMO

Trichoderma is a genus of common filamentous fungi that display a remarkable range of lifestyles and interactions with other fungi, animals and plants. Because of their ability to antagonize plant-pathogenic fungi and to stimulate plant growth and defence responses, some Trichoderma strains are used for biological control of plant diseases. In this Review, we discuss recent advances in molecular ecology and genomics which indicate that the interactions of Trichoderma spp. with animals and plants may have evolved as a result of saprotrophy on fungal biomass (mycotrophy) and various forms of parasitism on other fungi (mycoparasitism), combined with broad environmental opportunism.


Assuntos
Genoma Fúngico , Nematoides/microbiologia , Plantas/microbiologia , Microbiologia do Solo , Trichoderma/genética , Trichoderma/fisiologia , Animais , Genes Fúngicos , Hypocrea/fisiologia , Desenvolvimento Vegetal , Doenças das Plantas/microbiologia , Rizosfera , Simbiose , Trichoderma/crescimento & desenvolvimento , Trichoderma/patogenicidade
19.
Eukaryot Cell ; 10(11): 1527-35, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21890820

RESUMO

The conidium plays a critical role in the life cycle of many filamentous fungi, being the primary means for survival under unfavorable conditions. To investigate the transcriptional changes taking place during the transition from growing hyphae to conidia in Trichoderma reesei, microarray experiments were performed. A total of 900 distinct genes were classified as differentially expressed, relative to their expression at time zero of conidiation, at least at one of the time points analyzed. The main functional categories (FunCat) overrepresented among the upregulated genes were those involving solute transport, metabolism, transcriptional regulation, secondary metabolite synthesis, lipases, proteases, and, particularly, cellulases and hemicellulases. Categories overrepresented among the downregulated genes were especially those associated with ribosomal and mitochondrial functions. The upregulation of cellulase and hemicellulase genes was dependent on the function of the positive transcriptional regulator XYR1, but XYR1 exerted no influence on conidiation itself. At least 20% of the significantly regulated genes were nonrandomly distributed within the T. reesei genome, suggesting an epigenetic component in the regulation of conidiation. The significant upregulation of cellulases and hemicellulases during this process, and thus cellulase and hemicellulase content in the spores of T. reesei, contributes to the hypothesis that the ability to hydrolyze plant biomass is a major trait of this fungus enabling it to break dormancy and reinitiate vegetative growth after a period of facing unfavorable conditions.


Assuntos
Celulase/metabolismo , Proteínas Fúngicas/metabolismo , Trichoderma/fisiologia , Biomassa , Celulase/biossíntese , Celulase/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genoma , Glicosídeo Hidrolases/biossíntese , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Hifas , Análise de Sequência com Séries de Oligonucleotídeos , Espécies Reativas de Oxigênio , Esporos Fúngicos/enzimologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Transcrição Gênica , Trichoderma/enzimologia , Trichoderma/genética
20.
Appl Environ Microbiol ; 77(20): 7217-26, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21856825

RESUMO

Mycoparasitic Trichoderma species have expanded numbers of fungal subgroup C chitinases that contain multiple carbohydrate binding modules and could thus be important for fungal cell wall degradation during the mycoparasitic attack. In this study, we analyzed the gene regulation of subgroup C chitinases in the mycoparasite Trichoderma virens. In addition to regulation by nutritional stimuli, we found complex expression patterns in different parts of the fungal colony, and also, the mode of cultivation strongly influenced subgroup C chitinase transcript levels. Thus, the regulation of these genes is governed by a combination of colony-internal and -external signals. Our results showed completely different expression profiles of subgroup C chitinase genes in T. virens than in a previous study with T. atroviride, although both fungi are potent mycoparasites. Only a few subgroup C chitinase orthologues were found in T. atroviride and T. virens, and even those showed substantially divergent gene expression patterns. Microscopic analysis revealed morphogenetic differences between T. atroviride and T. virens, which could be connected to differential subgroup C chitinase gene expression. The biological function of fungal subgroup C chitinases therefore might not be as clear-cut as previously anticipated. They could have pleiotropic roles and might be involved in both degradation of exogenous chitinous carbon sources, including other fungal cell walls, and recycling of their own cell walls during hyphal development and colony formation.


Assuntos
Quitinases/biossíntese , Regulação Fúngica da Expressão Gênica , Trichoderma/enzimologia , Trichoderma/genética , Perfilação da Expressão Gênica , Transdução de Sinais , Transcrição Gênica , Trichoderma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...