Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biotechnol ; 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37517081

RESUMO

The K family of vitamins includes a collection of molecules with different pharmacokinetic characteristics. Menaquinone-7 (MK-7) has the finest properties and is the most therapeutically beneficial due to its long plasma half-life and outstanding extrahepatic bioavailability. MK-7 exhibits cis-trans isomerism, and merely the all-trans form is biologically efficacious. Therefore, the remedial value of MK-7 end products is exclusively governed by the quantity of all-trans MK-7. Consumers favour fermentation for the production of MK-7; however, it involves several challenges. The low MK-7 yield and extensive downstream processing requirements increase production costs, resulting in an expensive final product that is not universally available. Bacterial cell immobilisation with iron oxide nanoparticles (IONs) can potentially address the limitations of MK-7 fermentation. Uncoated IONs tend to have low stability and can adversely affect cell viability; thus, amine-functionalised IONs, owing to their increased physicochemical stability and biocompatibility, are a favourable alternative. Nonetheless, employing biocompatible IONs for this purpose is only advantageous if the bioactive MK-7 isomer is obtained in the most significant fraction, exploring which formed the aim of this investigation. Two amine-functionalised IONs, namely 3-aminopropyltriethoxysilane (APTES)-coated IONs (IONs@APTES) and L-Lysine (L-Lys)-coated IONs (L-Lys@IONs), were synthesised and characterised, and their impact on various parameters was evaluated. IONs@APTES were superior, and the optimal concentration (300 [Formula: see text]g/mL) increased all-trans MK-7 production and improved its yield relative to the untreated cells by 2.3- and 3.1-fold, respectively. The outcomes of this study present an opportunity to develop an innovative and effective fermentation method that enhances the production of bioactive MK-7.

2.
Nanomaterials (Basel) ; 13(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37368255

RESUMO

Menaquinone-7 (MK-7) is the most therapeutically valuable K vitamin owing to its excellent bioavailability. MK-7 occurs as geometric isomers, and only all-trans MK-7 is bioactive. The fermentation-based synthesis of MK-7 entails various challenges, primarily the low fermentation yield and numerous downstream processing steps. This raises the cost of production and translates to an expensive final product that is not widely accessible. Iron oxide nanoparticles (IONPs) can potentially overcome these obstacles due to their ability to enhance fermentation productivity and enable process intensification. Nevertheless, utilisation of IONPs in this regard is only beneficial if the biologically active isomer is achieved in the greatest proportion, the investigation of which constituted the objective of this study. IONPs (Fe3O4) with an average size of 11 nm were synthesised and characterised using different analytical techniques, and their effect on isomer production and bacterial growth was assessed. The optimum IONP concentration (300 µg/mL) improved the process output and resulted in a 1.6-fold increase in the all-trans isomer yield compared to the control. This investigation was the first to evaluate the role of IONPs in the synthesis of MK-7 isomers, and its outcomes will assist the development of an efficient fermentation system that favours the production of bioactive MK-7.

3.
Bioprocess Biosyst Eng ; 45(8): 1371-1390, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35864383

RESUMO

Menaquinone-7 (MK-7) offers significant health benefits; however, only the all-trans form is biologically active. MK-7 produced through fermentation can occur as all-trans and cis isomers, and the therapeutic value of the resulting MK-7 is exclusively determined by the quantity of the all-trans isomer. Therefore, this study aimed to investigate the effect of the media composition on the isomer profile obtained from fermentation and determine the optimum media combination to increase the concentration of the all-trans isomer and diminish the production of cis MK-7. For this purpose, design of experiments (DOE) was used to screen the most effective nutrients, and a central composite face-centred design (CCF) was employed to optimise the media components. The optimum media consisted of 1% (w/v) glucose, 2% (w/v) yeast extract, 2% (w/v) soy peptone, 2% (w/v) tryptone, and 0.1% (w/v) CaCl2. This composition resulted in an average all-trans and cis isomer concentration of 36.366 mg/L and 1.225 mg/L, respectively. In addition, the optimised media enabled an all-trans isomer concentration 12.2-fold greater and a cis isomer concentration 2.9-fold less than the unoptimised media. This study was the first to consider the development of an optimised fermentation media to enhance the production of the bioactive isomer of MK-7 and minimise the concentration of the inactive isomer. Furthermore, this media is commercially promising, as it will improve the process productivity and reduce the costs associated with the industrial fermentation of the vitamin.


Assuntos
Glucose , Vitaminas , Fermentação , Vitamina K 2/análogos & derivados
4.
Materials (Basel) ; 15(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35009222

RESUMO

Conventionally, in a linear economy, C&D (Construction and Demolition) waste was considered as zero value materials, and, as a result of that, most C&D waste materials ended up in landfills. In recent years, with the increase in the awareness around sustainability and resource management, various countries have started to explore new models to minimize the use of limited resources which are currently overused, mismanaged, or quickly depleting. In this regard, the implementation of CE (Circular Economy) has emerged as a potential model to minimize the negative impact of C&D wastes on the environment. However, there are some challenges hindering a full transition to CE in the construction and demolition sectors. Therefore, this review paper aims to critically scrutinize different aspects of C&D waste and how CE can be integrated into construction projects. Reviewing of the literature revealed that the barriers in the implementation of CE in C&D waste sectors fall in five main domains, namely legal, technical, social, behavioral, and economic aspects. In this context, it was found that policy and governance, permits and specifications, technological limitation, quality and performance, knowledge and information, and, finally, the costs associated with the implementation of CE model at the early stage are the main barriers. In addition to these, from the contractors' perspective, C&D waste dismantling, segregation, and on-site sorting, transportation, and local recovery processes are the main challenges at the start point for small-scale companies. To address the abovementioned challenges, and also to minimize the ambiguity of resulting outcomes by implementing CE in C&D waste sectors, there is an urgent need to introduce a global framework and a practicable pathway to allow companies to implement such models, regardless of their scale and location. Additionally, in this paper, recommendations on the direction for areas of future studies for a reduction in the environmental impacts have been provided. To structure an effective model approach, the future direction should be more focused on dismantling practices, hazardous material handling, quality control on waste acceptance, and material recovery processes, as well as a incentivization mechanism to promote ecological, economic, and social benefits of the CE for C&D sectors.

5.
Bioprocess Biosyst Eng ; 44(1): 39-45, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32734358

RESUMO

Probiotics, in particular, lactic acid bacteria (LAB) are widely used as starter cultures in food and pharmaceutical industries. Presence of LAB supports the production and preservation of a diverse range of food products, provides a positive effect on the human gastrointestinal tract, and prevents the progression of many diseases. However, the main limiting factor in the application of LAB is that they hardly survive in acidic conditions, including the human digestive system. This factor inhibits LAB to maintain their functionality and deliver their health benefits to the host. For this purpose, magnetic immobilisation of LAB with iron oxide nanoparticles (IONs) was conducted to evaluate the effect of IONs on bacterial growth and their viability at low pH. Gram-positive Lactobacillus acidophilus, a well-known species of LAB, was selected for this study. The IONs were successfully synthesised with the average size of 7 nm and used for decoration of L. acidophilus cells at low pH. Based on the results, a 1.8-fold increase in bacterial viability was observed by decorating cells with 360 µg/mL IONs.


Assuntos
Lactobacillus acidophilus/crescimento & desenvolvimento , Nanopartículas Magnéticas de Óxido de Ferro/química , Concentração de Íons de Hidrogênio , Viabilidade Microbiana
6.
Bioprocess Biosyst Eng ; 43(10): 1773-1780, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32377942

RESUMO

Vitamin menaquinone-7 (MK-7) supplementation improves bone health and reduces the incidence of osteoporosis. Despite the recent developments in MK-7 fermentation using Bacillus subtilis natto, low fermentation yields, as well as complicated downstream processing steps, are still the main reasons for the expensive final product. To overcome these issues, developing a fermented dairy-based product rich in MK-7 by avoiding costly downstream steps and optimising the fermentation operating conditions to enhance the MK-7 concentration would be an alternative approach. The present study, therefore, aims to evaluate the role of agitation and aeration as the key operating conditions on MK-7 production by Bacillus subtilis natto using a milk media. The agitation and aeration rates of 525 RPM and 5 VVM were found to be the optimum levels leading to the production of 3.54 mg/L of MK-7. Further, the sensory evaluation was performed to compare the sensory properties of the freeze-dried fermented samples with non-fermented milk samples. The results illustrated that the fermented samples had a significant saltiness with intense aroma resulting in the less acceptability of them by the panellists.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Produtos Fermentados do Leite , Alimento Funcional , Vitamina K 2/análogos & derivados , Vitamina K 2/metabolismo
7.
Nanomaterials (Basel) ; 10(3)2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32183496

RESUMO

Zinc oxide (ZnO) nanoparticles have gained widespread interest due to their unique properties, making them suitable for a range of applications. Several methods for their production are available, and of these, controlled synthesis techniques are particularly favourable. Large-scale culturing of Chlorella vulgaris produces secretory carbohydrates as a waste product, which have been shown to play an important role in directing the particle size and morphology of nanoparticles. In this investigation, ZnO nanorods were produced through a controlled synthesis approach using secretory carbohydrates from C. vulgaris, which presents a cost-effective and sustainable alternative to the existing techniques. Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRD) analysis, transmission electron microscopy (TEM), and UV-Vis spectroscopy were used to characterise the nanorods. The prepared nanorods exhibited a broad range of UV absorption, which suggests that the particles are a promising broadband sun blocker and are likely to be effective for the fabrication of sunscreens with protection against both UVB (290-320 nm) and UVA (320-400 nm) radiations. The antimicrobial activity of the prepared nanorods against Gram-positive and Gram-negative bacteria was also assessed. The nanostructures had a crystalline structure and rod-like appearance, with an average length and width of 150 nm and 21 nm, respectively. The nanorods also demonstrated notable antibacterial activity, and 250 µg/mL was determined to be the most effective concentration. The antibacterial properties of the ZnO nanorods suggest its suitability for a range of antimicrobial uses, such as in the food industry and for various biomedical applications.

8.
Appl Microbiol Biotechnol ; 104(5): 2029-2037, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31940083

RESUMO

Crack propagation is one of the issues associating with dental composites which can significantly affect their performance. Current solutions for preventing and stopping the cracks include maximizing the filler to matrix ratio as well as fiber reinforcing of composites which are not always reliable. The precipitation of calcium carbonate (CaCO3) minerals by the generally recognized as safe (GRAS) bacteria can be seen as a novel approach to address this shortcoming. In the present study, the effect of microbially induced calcium carbonate precipitation (MICP) on filling dental composites' cracks and cavities was studied. In this first step, the capability of different GRAS bacteria to induce CaCO3 precipitation was investigated. In the next step, the capability of potent bacteria to initiate MCIP in solid matrix was evaluated. For this purpose, the CaCO3-bacteria along with necessary nutrients were introduced into different dental composites in two ways, namely, powder and paste form. The light-cured composites were analyzed using optical microscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDS) to identify and characterize the precipitated CaCO3 crystals. It was shown that the incorporation of powder healing compound in two composites resulted in precipitation of CaCO3, while no crystals were formed when a paste form of healing compound was mixed with composites. The results evidently show that MICP can be a feasible alternative to current inefficient approaches to address microcracking issues in dental composites.


Assuntos
Bactérias/metabolismo , Carbonato de Cálcio/química , Materiais Dentários/química , Carbonato de Cálcio/metabolismo , Precipitação Química , Materiais Dentários/metabolismo
9.
Environ Sci Ecotechnol ; 4: 100064, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36157704

RESUMO

Glass is a common material made from natural resources such as sand. Although much of the waste glass is recycled to make new glass products, a large proportion is still being sent to landfill. Glass is a useful resource that is non-biodegradable, occupying valuable landfill space. To combat the waste glass that is heading to landfill, alternative recycling forms need to be investigated. The construction industry is one of the largest CO2 emitters in the world, producing up to 8% of the global CO2 to produce cement. The use of sand largely depletes natural resources for the creation of mortars or concretes. This review explores the possibilities of incorporating waste glass into cement-based materials. It was found waste glass is unsuitable as a raw material replacement to produce clinker and as a coarse aggregate, due to a liquid state being produced in the kiln and the smooth surface area, respectively. Promising results were found when incorporating fine particles of glass in cement-based materials due to the favourable pozzolanic reaction which benefits the mechanical properties. It was found that 20% of cement can be replaced with waste glass of 20 µm without detrimental effects on the mechanical properties. Replacements higher than 30% can cause negative impacts as insufficient amounts of CaCO3 remain to react with the silica from the glass, known as the dilution effect. As the fine aggregate replacement for waste glass increases over 20%, the mechanical properties decrease proportionally; however, up to 20% has similar results to traditionally mixes.

10.
Appl Microbiol Biotechnol ; 103(12): 4693-4708, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31076835

RESUMO

Biodeposition of minerals is a widespread phenomenon in the biological world and is mediated by bacteria, fungi, protists, and plants. Calcium carbonate is one of those minerals that naturally precipitate as a by-product of microbial metabolic activities. Over recent years, microbially induced calcium carbonate precipitation (MICP) has been proposed as a potent solution to address many environmental and engineering issues. However, for being a viable alternative to conventional techniques as well as being financially and industrially competitive, various challenges need to be overcome. In this review, the detailed metabolic pathways, including ammonification of amino acids, dissimilatory reduction of nitrate, and urea degradation (ureolysis), along with the potent bacteria and the favorable conditions for precipitation of calcium carbonate, are explained. Moreover, this review highlights the potential environmental and engineering applications of MICP, including restoration of stones and concrete, improvement of soil properties, sand consolidation, bioremediation of contaminants, and carbon dioxide sequestration. The key research and development questions necessary for near future large-scale applications of this innovative technology are also discussed.


Assuntos
Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Carbonato de Cálcio/metabolismo , Dióxido de Carbono/metabolismo , Precipitação Química , Aminoácidos/metabolismo , Biodegradação Ambiental , Microbiologia Ambiental , Redes e Vias Metabólicas , Solo/química , Ureia/metabolismo
11.
Foods ; 8(3)2019 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-30857316

RESUMO

Prebiotics are a group of nutrients that are degraded by gut microbiota. Their relationship with human overall health has been an area of increasing interest in recent years. They can feed the intestinal microbiota, and their degradation products are short-chain fatty acids that are released into blood circulation, consequently, affecting not only the gastrointestinal tracts but also other distant organs. Fructo-oligosaccharides and galacto-oligosaccharides are the two important groups of prebiotics with beneficial effects on human health. Since low quantities of fructo-oligosaccharides and galacto-oligosaccharides naturally exist in foods, scientists are attempting to produce prebiotics on an industrial scale. Considering the health benefits of prebiotics and their safety, as well as their production and storage advantages compared to probiotics, they seem to be fascinating candidates for promoting human health condition as a replacement or in association with probiotics. This review discusses different aspects of prebiotics, including their crucial role in human well-being.

12.
Foods ; 8(3)2019 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-30832382

RESUMO

Zinc is one of the essential trace elements, and plays an important role in human health. Severe zinc deficiency can negatively affect organs such as the epidermal, immune, central nervous, gastrointestinal, skeletal, and reproductive systems. In this study, we offered a novel biocompatible xanthan gum capped zinc oxide (ZnO) microstar as a potential dietary zinc supplementation for food fortification. Xanthan gum (XG) is a commercially important extracellular polysaccharide that is widely used in diverse fields such as the food, cosmetic, and pharmaceutical industries, due to its nontoxic and biocompatible properties. In this work, for the first time, we reported a green procedure for the synthesis of ZnO microstars using XG, as the stabilizing agent, without using any synthetic or toxic reagent. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) were used to study the structure, morphology, and size of the synthesized ZnO structures. The results showed that the synthesized structures were both hexagonal phase and starlike, with an average particle size of 358 nm. The effect of different dosages of XG-capped ZnO nanoparticles (1⁻9 mM) against Gram-negative (Escherichia coli) and Gram-positive (Bacillus licheniformis, Bacillus subtilis, and Bacillus sphaericus) bacteria were also investigated. Based on the results, the fabricated XG-capped ZnO microstars showed a high level of biocompatibility with no antimicrobial effect against the tested microorganisms. The data suggested the potential of newly produced ZnO microstructures for a range of applications in dietary supplementation and food fortification.

13.
Bioprocess Biosyst Eng ; 42(1): 37-46, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30229327

RESUMO

Despite the advantages of concrete, it has a pore structure and is susceptible to cracking. The initiated cracks as well as pores and their connectivity accelerate the structure degradation by permitting aggressive substances to flow into the concrete matrix. This phenomenon results in a considerable repair and maintenance costs and decreases the concrete lifespan. In recent years, biotechnological approach through immobilization of bacteria in/or protective vehicles has emerged as a viable solution to address this issue. However, the addition of macro- or micro scale size particles can decrease the integrity of matrix. In this study, the immobilization of bacteria with magnetic iron oxide nanoparticle (ION) was proposed to protect the bacterial cell and evaluate their effect on healing the concrete pore space. The results show that the addition of immobilized bacteria with IONs resulted in a lower water absorption and volume of permeable pore space. Crystal analysis using scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) revealed that CaCO3 was precipitated in bio-concrete specimen as a result of microbial biosynthesis.


Assuntos
Biotecnologia/métodos , Carbonato de Cálcio/química , Compostos Férricos/química , Magnetismo , Nanotecnologia/métodos , Adsorção , Bactérias , Materiais Biocompatíveis , Cristalografia por Raios X , Desenho de Equipamento , Microbiologia Industrial , Íons , Teste de Materiais , Nanopartículas/química , Tamanho da Partícula , Permeabilidade , Porosidade , Eletricidade Estática , Água , Difração de Raios X
14.
World J Microbiol Biotechnol ; 34(11): 168, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30387067

RESUMO

Concrete is one of the most broadly used construction materials in the world due to its number of performance characteristics. Despite the long life of concrete structure under ideal conditions, it tends to crack and this phenomenon results in a considerable reduction in service life and performance. Evidence of microbial involvement in the precipitation of minerals has led to a massive investigation on adapting this technology for addressing the concrete cracking issue. Calcium carbonate is one of most compatible materials with the concrete constituents and it can be induced via biological process. In this review paper, the effects of different factors, such as nucleation site, pH, nutrient and temperature, on the biosynthesis of calcium carbonate are elucidated. Moreover, the influences of effective factors on calcium carbonate polymorphism are extensively elaborated. Finally, the limitations for the future application of this innovative technology in construction industry are highlighted.


Assuntos
Bactérias/metabolismo , Carbonato de Cálcio/metabolismo , Precipitação Química , Materiais de Construção/microbiologia , Carbonato de Cálcio/química , Cristalização , Alimentos , Concentração de Íons de Hidrogênio , Imobilização , Microbiologia Industrial , Teste de Materiais , Temperatura
15.
Appl Microbiol Biotechnol ; 102(8): 3595-3606, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29502177

RESUMO

Recently, magnetic iron oxide nanoparticles (IONs) have been used to control and modify the characteristics of concrete and mortar. Concrete is one of the most used materials in the world; however, it is susceptible to cracking. Over recent years, a sustainable biotechnological approach has emerged as an alternative approach to conventional techniques to heal the concrete cracks by the incorporation of bacterial cells and nutrients into the concrete matrix. Once cracking occurs, CaCO3 is induced and the crack is healed. Considering the positive effects of IONs on the concrete properties, the effect of these nanoparticles on bacterial growth and CaCO3 biosynthesis needs to be evaluated for their possible application in bio self-healing concrete. In the present work, IONs were successfully synthesized and characterized using various techniques. The presence of IONs showed a significant effect on both bacterial growth and CaCO3 precipitation. The highest bacterial growth was observed in the presence of 150 µg/mL IONs. The highest concentration of induced CaCO3 (34.54 g/L) was achieved when the bacterial cells were immobilized with 300 µg/mL of IONs. This study provides new data and supports the possibility of using IONs as a new tool in designing the next generation of bio self-healing concrete.


Assuntos
Carbonato de Cálcio/metabolismo , Materiais de Construção , Compostos Férricos/química , Nanopartículas Metálicas/química , Bactérias/genética , Bactérias/metabolismo
16.
Appl Microbiol Biotechnol ; 102(10): 4489-4498, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29574617

RESUMO

Concrete is arguably one of the most important and widely used materials in the world, responsible for the majority of the industrial revolution due to its unique properties. However, it is susceptible to cracking under internal and external stresses. The generated cracks result in a significant reduction in the concrete lifespan and an increase in maintenance and repair costs. In recent years, the implementation of bacterial-based healing agent in the concrete matrix has emerged as one of the most promising approaches to address the concrete cracking issue. However, the bacterial cells need to be protected from the high pH content of concrete as well as the exerted shear forces during preparation and hardening stages. To address these issues, we propose the magnetic immobilization of bacteria with iron oxide nanoparticles (IONs). In the present study, the effect of the designed bio-agent on mechanical properties of concrete (compressive strength and drying shrinkage) is investigated. The results indicate that the addition of immobilized Bacillus species with IONs in concrete matrix contributes to increasing the compressive strength. Moreover, the precipitates in the bio-concrete specimen were characterized using scanning electron microscope (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). The characterization studies confirm that the precipitated crystals in bio-concrete specimen were CaCO3, while no precipitation was observed in the control sample.


Assuntos
Bactérias/metabolismo , Materiais de Construção/microbiologia , Compostos Férricos , Microbiologia Industrial , Nanopartículas/química , Bactérias/química , Carbonato de Cálcio , Nanopartículas/metabolismo
17.
Appl Microbiol Biotechnol ; 102(5): 2167-2178, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29380030

RESUMO

Immobilization has been reported as an efficient technique to address the bacterial vulnerability for application in bio self-healing concrete. In this study, for the first time, magnetic iron oxide nanoparticles (IONs) are being practically employed as the protective vehicle for bacteria to evaluate the self-healing performance in concrete environment. Magnetic IONs were successfully synthesized and characterized using different techniques. The scanning electron microscope (SEM) images show the efficient adsorption of nanoparticles to the Bacillus cells. Microscopic observation illustrates that the incorporation of the immobilized bacteria in the concrete matrix resulted in a significant crack healing behavior, while the control specimen had no healing characteristics. Analysis of bio-precipitates revealed that the induced minerals in the cracks were calcium carbonate. The effect of magnetic immobilized cells on the concrete water absorption showed that the concrete specimens supplemented with decorated bacteria with IONs had a higher resistance to water penetration. The initial and secondary water absorption rates in bio-concrete specimens were 26% and 22% lower than the control specimens. Due to the compatible behavior of IONs with the concrete compositions, the results of this study proved the potential application of IONs for developing a new generation of bio self-healing concrete.


Assuntos
Bacillus/metabolismo , Materiais de Construção/microbiologia , Compostos Férricos/química , Nanopartículas de Magnetita/química , Bacillus/química , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Células Imobilizadas/química , Células Imobilizadas/metabolismo , Materiais de Construção/análise , Compostos Férricos/metabolismo
18.
Appl Microbiol Biotechnol ; 102(1): 175-184, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29138908

RESUMO

Self-healing mechanisms are a promising solution to address the concrete cracking issue. Among the investigated self-healing strategies, the biotechnological approach is distinguished itself by inducing the most compatible material with concrete composition. In this method, the potent bacteria and nutrients are incorporated into the concrete matrix. Once cracking occurs, the bacteria will be activated, and the induced CaCO3 crystals will seal the concrete cracks. However, the effectiveness of a bio self-healing concrete strictly depends on the viability of bacteria. Therefore, it is required to protect the bacteria from the resulted shear forces caused by mixing and drying shrinkage of concrete. Due to the positive effects on mechanical properties and the high compatibility of metallic nanoparticles with concrete composition, for the first time, we propose 3-aminopropyltriethoxy silane-coated iron oxide nanoparticles (APTES-coated IONs) as a biocompatible carrier for Bacillus species. This study was aimed to investigate the effect of APTES-coated IONs on the bacterial viability and CaCO3 yield for future application in the concrete structures. The APTES-coated IONs were successfully synthesized and characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The results show that the presence of 100 µg/mL APTES-coated IONs could increase the bacterial viability. It was also found that the CaCO3-specific yield was significantly affected in the presence of APTES-coated IONs. The highest CaCO3-specific yield was achieved when the cells were decorated with 50 µg/mL of APTES-coated IONs. This study provides new insights for the application of APTES-coated IONs in designing bio self-healing strategies.


Assuntos
Aminas/química , Carbonato de Cálcio/análise , Materiais de Construção/microbiologia , Compostos Férricos/química , Nanopartículas/química , Bacillus/crescimento & desenvolvimento , Bacillus/metabolismo , Biotecnologia/métodos , Carbonato de Cálcio/química , Materiais de Construção/normas , Microbiologia Industrial , Teste de Materiais/métodos , Viabilidade Microbiana , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura
19.
Appl Microbiol Biotechnol ; 101(8): 3131-3142, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28091788

RESUMO

Over recent years, the implementation of microbially produced calcium carbonate (CaCO3) in different industrial and environmental applications has become an alternative for conventional approaches to induce CaCO3 precipitation. However, there are many factors affecting the biomineralization of CaCO3, which may restrict its application. In this study, we investigated the effects of pH and aeration as the main two influential parameters on bacterial precipitation of CaCO3. The results showed that the aeration had a significant effect on bacterial growth and its rise from 0.5 to 4.5 SLPM could produce 4.2 times higher CaCO3 precipitation. The increase of pH to 12 resulted in 6.3-fold increase in CaCO3 precipitation as compared to uncontrolled-pH fermentation. Morphological characterization showed that the pH is an effective parameter on CaCO3 morphology. Calcite was found to be the predominant precipitate during aeration-controlled fermentations, while vaterite was mainly produced at lower pH (up to 10) over controlled-pH fermentations. Further increase in pH resulted in a morphological transition, and vaterite transformed to calcite at the pH ranges between 10 and 12.


Assuntos
Bacillus licheniformis/metabolismo , Carbonato de Cálcio/metabolismo , Oxigênio/metabolismo , Bacillus licheniformis/crescimento & desenvolvimento , Reatores Biológicos , Carbonato de Cálcio/química , Precipitação Química , Fermentação , Concentração de Íons de Hidrogênio
20.
Appl Microbiol Biotechnol ; 100(23): 9895-9906, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27392449

RESUMO

Microbially induced calcium carbonate precipitation is an emerging process for the production of self-healing concrete. This study was aimed to investigate the effects and optimum conditions on calcium carbonate biosynthesis. Bacillus licheniformis, Bacillus sphaericus, yeast extract, urea, calcium chloride and aeration were found to be the most significant factors affecting the biomineralization of calcium carbonate. It was noticed that the morphology of microbial calcium carbonate was mainly affected by the genera of bacteria (cell surface properties), the viscosity of the media and the type of electron acceptors (Ca2+). The maximum calcium carbonate concentration of 33.78 g/L was achieved at the optimum conditions This value is the highest concentration reported in the literature.


Assuntos
Bacillus/metabolismo , Carbonato de Cálcio/metabolismo , Precipitação Química , Meios de Cultura/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...