Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 49(15): 9273-9, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26176879

RESUMO

Iron-catalyzed diesel particle filters (DPFs) are widely used for particle abatement. Active catalyst particles, so-called fuel-borne catalysts (FBCs), are formed in situ, in the engine, when combusting precursors, which were premixed with the fuel. The obtained iron oxide particles catalyze soot oxidation in filters. Iron-catalyzed DPFs are considered as safe with respect to their potential to form polychlorinated dibenzodioxins/furans (PCDD/Fs). We reported that a bimetallic potassium/iron FBC supported an intense PCDD/F formation in a DPF. Here, we discuss the impact of fatty acid methyl ester (FAME) biofuel on PCDD/F emissions. The iron-catalyzed DPF indeed supported a PCDD/F formation with biofuel but remained inactive with petroleum-derived diesel fuel. PCDD/F emissions (I-TEQ) increased 23-fold when comparing biofuel and diesel data. Emissions of 2,3,7,8-TCDD, the most toxic congener [toxicity equivalence factor (TEF) = 1.0], increased 90-fold, and those of 2,3,7,8-TCDF (TEF = 0.1) increased 170-fold. Congener patterns also changed, indicating a preferential formation of tetra- and penta-chlorodibenzofurans. Thus, an inactive iron-catalyzed DPF becomes active, supporting a PCDD/F formation, when operated with biofuel containing impurities of potassium. Alkali metals are inherent constituents of biofuels. According to the current European Union (EU) legislation, levels of 5 µg/g are accepted. We conclude that risks for a secondary PCDD/F formation in iron-catalyzed DPFs increase when combusting potassium-containing biofuels.


Assuntos
Biocombustíveis/análise , Filtração/instrumentação , Furanos/química , Gasolina/análise , Ferro/química , Dibenzodioxinas Policloradas/análogos & derivados , Poluentes Atmosféricos/análise , Catálise , Cloro/química , Meio Ambiente , Oxirredução , Dibenzodioxinas Policloradas/química , Emissões de Veículos/análise
2.
J Hazard Mater ; 256-257: 76-83, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23669793

RESUMO

Degradation of non-volatile organic compounds-environmental toxins (methyltriclosane and phenanthrene), bovine serum albumin, as well as bioparticles (Legionella pneumophila, Bacillus subtilis, and Bacillus anthracis)-in a commercially available plasma air purifier based on a cold plasma was studied in detail, focusing on its efficiency and on the resulting degradation products. This system is capable of handling air flow velocities of up to 3.0m s(-1) (3200Lmin(-1)), much higher than other plasma-based reactors described in the literature, which generally are limited to air flow rates below 10Lmin(-1). Mass balance studies consistently indicated a reduction in concentration of the compounds/particles after passage through the plasma air purifier, 31% for phenanthrene, 17% for methyltriclosane, and 80% for bovine serum albumin. L. pneumophila did not survive passage through the plasma air purifier, and cell counts of aerosolized spores of B. subtilis and B. anthracis were reduced by 26- and 15-fold, depending on whether it was run at 10Hz or 50Hz, respectively. However rather than chemical degradation, deposition on the inner surfaces of the plasma air purifier occured. Our interpretation is that putative "degradation" efficiencies were largely due to electrostatic precipitation rather than to decomposition into smaller molecules.


Assuntos
Filtros de Ar , Poluentes Atmosféricos/química , Fenantrenos/química , Triclosan/análogos & derivados , Poluição do Ar/prevenção & controle , Bacillus anthracis , Bacillus subtilis , Cobre/química , Eletrodos , Legionella pneumophila , Gases em Plasma , Soroalbumina Bovina , Esporos Bacterianos , Triclosan/química
3.
Environ Sci Technol ; 47(12): 6510-7, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23713673

RESUMO

Catalytic diesel particle filters (DPFs) have evolved to a powerful environmental technology. Several metal-based, fuel soluble catalysts, so-called fuel-borne catalysts (FBCs), were developed to catalyze soot combustion and support filter regeneration. Mainly iron- and cerium-based FBCs have been commercialized for passenger cars and heavy-duty vehicle applications. We investigated a new iron/potassium-based FBC used in combination with an uncoated silicon carbide filter and report effects on emissions of polychlorinated dibenzodioxins/furans (PCDD/Fs). The PCDD/F formation potential was assessed under best and worst case conditions, as required for filter approval under the VERT protocol. TEQ-weighted PCDD/F emissions remained low when using the Fe/K catalyst (37/7.5 µg/g) with the filter and commercial, low-sulfur fuel. The addition of chlorine (10 µg/g) immediately led to an intense PCDD/F formation in the Fe/K-DPF. TEQ-based emissions increased 51-fold from engine-out levels of 95 to 4800 pg I-TEQ/L after the DPF. Emissions of 2,3,7,8-TCDD, the most toxic congener (TEF = 1.0), increased 320-fold, those of 2,3,7,8-TCDF (TEF = 0.1) even 540-fold. Remarkable pattern changes were noticed, indicating a preferential formation of tetrachlorinated dibenzofurans. It has been shown that potassium acts as a structural promoter inducing the formation of magnetite (Fe3O4) rather than hematite (Fe2O3). This may alter the catalytic properties of iron. But the chemical nature of this new catalyst is yet unknown, and we are far from an established mechanism for this new pathway to PCDD/Fs. In conclusion, the iron/potassium-catalyzed DPF has a high PCDD/F formation potential, similar to the ones of copper-catalyzed filters, the latter are prohibited by Swiss legislation.


Assuntos
Filtração/métodos , Ferro/química , Dibenzodioxinas Policloradas/análogos & derivados , Potássio/química , Benzofuranos , Catálise , Dibenzodioxinas Policloradas/química
4.
Environ Sci Technol ; 46(24): 13317-25, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23214996

RESUMO

The impact of a combined diesel particle filter-deNO(x) system (DPN) on emissions of reactive nitrogen compounds (RNCs) was studied varying the urea feed factor (α), temperature, and residence time, which are key parameters of the deNO(x) process. The DPN consisted of a platinum-coated cordierite filter and a vanadia-based deNO(x) catalyst supporting selective catalytic reduction (SCR) chemistry. Ammonia (NH3) is produced in situ from thermolysis of urea and hydrolysis of isocyanic acid (HNCO). HNCO and NH3 are both toxic and highly reactive intermediates. The deNO(x) system was only part-time active in the ISO8178/4 C1cycle. Urea injection was stopped and restarted twice. Mean NO and NO2 conversion efficiencies were 80%, 95%, 97% and 43%, 87%, 99%, respectively, for α = 0.8, 1.0, and 1.2. HNCO emissions increased from 0.028 g/h engine-out to 0.18, 0.25, and 0.26 g/h at α = 0.8, 1.0, and 1.2, whereas NH3 emissions increased from <0.045 to 0.12, 1.82, and 12.8 g/h with maxima at highest temperatures and shortest residence times. Most HNCO is released at intermediate residence times (0.2-0.3 s) and temperatures (300-400 °C). Total RNC efficiencies are highest at α = 1.0, when comparable amounts of reduced and oxidized compounds are released. The DPN represents the most advanced system studied so far under the VERT protocol achieving high conversion efficiencies for particles, NO, NO2, CO, and hydrocarbons. However, we observed a trade-off between deNO(x) efficiency and secondary emissions. Therefore, it is important to adopt such DPN technology to specific application conditions to take advantage of reduced NO(x) and particle emissions while avoiding NH3 and HNCO slip.


Assuntos
Filtração/instrumentação , Gasolina/análise , Nitratos/análise , Nitritos/análise , Material Particulado/química , Espécies Reativas de Nitrogênio/análise , Emissões de Veículos/análise , Catálise , Meio Ambiente , Óxido Nítrico/análise , Temperatura , Fatores de Tempo , Torque , Ureia/química
5.
Environ Sci Technol ; 39(7): 1967-73, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15871225

RESUMO

In October 2000, joint sealants containing polychlorinated biphenyls (PCB) were discovered in various public buildings in Switzerland. Triggered by this event, a nationwide comprehensive study was initiated by the Swiss Agency for the Environment, Forests, and Landscape, and 1348 samples of joint sealants as well as 160 indoor air samples from concrete buildings erected between 1950 and 1980 were analyzed. Out of 1348 samples, 646 (48%) contained PCB. In 279 (21%) samples, PCB concentrations of 10 g/kg and more were detected, and concentrations of 100 g/kg of PCB or more were found in 129 (9.6%) samples. These data indicate that PCB were widely used as plasticizers in joint sealants in Switzerland. In buildings constructed between 1966 and 1971, one-third of all joint sealants investigated contained more than 10 g/kg of PCB. PCB concentrations exceeding the limit of 0.050 g/kg above which material is required to be treated as PCB bulk product waste were reached by 568 samples (42%). PCB with a chlorine content between 45 and 55%, corresponding to mixtures such as Clophen A50, Aroclor 1248, and Aroclor 1254, were encountered in 316 samples (70%). In 42 cases (26%) where joint sealants containing PCB were present, clearly elevated PCB indoor air concentrations above 1 microg/m3 were encountered. In eight cases (5%), levels were higher than 3 microg/m3. The Swiss tentative guideline value of 6 microg/m3 (based on a daily exposure of 8 h) for PCB in indoor air was exceeded in one case (0.6%). On the basis of this work, representing the first large-scale nationwide analysis of the issue of PCB-contaminated joint sealants, we estimate that there are still 50-150 t of PCB present in these materials, acting as diffuse sources. They are distributed over many hundreds of buildings all over the country and represent a significant but frequently overlooked inventory of PCB. In light of the Stockholm Convention on persistent organic pollutants that entered into force last year, reduction of the release of PCB from these widely used materials is an important issue to be addressed.


Assuntos
Poluentes Ocupacionais do Ar/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Monitoramento Ambiental/estatística & dados numéricos , Arquitetura de Instituições de Saúde , Plastificantes/análise , Bifenilos Policlorados/análise , Manufaturas/análise , Manufaturas/toxicidade , Plastificantes/toxicidade , Bifenilos Policlorados/toxicidade , Espectrometria por Raios X , Suíça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...