Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Reconstr Microsurg ; 37(5): 391-404, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32971546

RESUMO

BACKGROUND: Wallerian degeneration (WD) following peripheral nerve injury (PNI) is an area of growing focus for pharmacological developments. Clinically, WD presents challenges in achieving full functional recovery following PNI, as prolonged denervation of distal tissues for an extended period of time can irreversibly destabilize sensory and motor targets with secondary tissue atrophy. Our objective is to improve upon histological assessments of WD. METHODS: Conventional methods utilize a qualitative system simply describing the presence or absence of WD in nerve fibers. We propose a three-category assessment that allows more quantification: A fibers appear normal, B fibers have moderate WD (altered axoplasm), and C fibers have extensive WD (myelin figures). Analysis was by light microscopy (LM) on semithin sections stained with toluidine blue in three rat tibial nerve lesion models (crush, partial transection, and complete transection) at 5 days postop and 5 mm distal to the injury site. The LM criteria were verified at the ultrastructural level. This early outcome measure was compared with the loss of extensor postural thrust and the absence of muscle atrophy. RESULTS: The results showed good to excellent internal consistency among counters, demonstrating a significant difference between the crush and transection lesion models. A significant decrease in fiber density in the injured nerves due to inflammation/edema was observed. The growth cones of regenerating axons were evident in the crush lesion group. CONCLUSION: The ABC method of histological assessment is a consistent and reliable method that will be useful to quantify the effects of different interventions on the WD process.


Assuntos
Traumatismos dos Nervos Periféricos , Degeneração Walleriana , Animais , Axônios/patologia , Compressão Nervosa , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/patologia , Ratos , Nervo Isquiático/patologia , Nervo Tibial/cirurgia , Degeneração Walleriana/patologia
2.
Mol Neurodegener ; 14(1): 7, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670054

RESUMO

BACKGROUND: Identifying effective strategies to prevent memory loss in AD has eluded researchers to date, and likely reflects insufficient understanding of early pathogenic mechanisms directly affecting memory encoding. As synaptic loss best correlates with memory loss in AD, refocusing efforts to identify factors driving synaptic impairments may provide the critical insight needed to advance the field. In this study, we reveal a previously undescribed cascade of events underlying pre and postsynaptic hippocampal signaling deficits linked to cognitive decline in AD. These profound alterations in synaptic plasticity, intracellular Ca2+ signaling, and network propagation are observed in 3-4 month old 3xTg-AD mice, an age which does not yet show overt histopathology or major behavioral deficits. METHODS: In this study, we examined hippocampal synaptic structure and function from the ultrastructural level to the network level using a range of techniques including electron microscopy (EM), patch clamp and field potential electrophysiology, synaptic immunolabeling, spine morphology analyses, 2-photon Ca2+ imaging, and voltage-sensitive dye-based imaging of hippocampal network function in 3-4 month old 3xTg-AD and age/background strain control mice. RESULTS: In 3xTg-AD mice, short-term plasticity at the CA1-CA3 Schaffer collateral synapse is profoundly impaired; this has broader implications for setting long-term plasticity thresholds. Alterations in spontaneous vesicle release and paired-pulse facilitation implicated presynaptic signaling abnormalities, and EM analysis revealed a reduction in the ready-releasable and reserve pools of presynaptic vesicles in CA3 terminals; this is an entirely new finding in the field. Concurrently, increased synaptically-evoked Ca2+ in CA1 spines triggered by LTP-inducing tetani is further enhanced during PTP and E-LTP epochs, and is accompanied by impaired synaptic structure and spine morphology. Notably, vesicle stores, synaptic structure and short-term plasticity are restored by normalizing intracellular Ca2+ signaling in the AD mice. CONCLUSIONS: These findings suggest the Ca2+ dyshomeostasis within synaptic compartments has an early and fundamental role in driving synaptic pathophysiology in early stages of AD, and may thus reflect a foundational disease feature driving later cognitive impairment. The overall significance is the identification of previously unidentified defects in pre and postsynaptic compartments affecting synaptic vesicle stores, synaptic plasticity, and network propagation, which directly impact memory encoding.


Assuntos
Doença de Alzheimer/patologia , Hipocampo/fisiopatologia , Plasticidade Neuronal/fisiologia , Vesículas Sinápticas/patologia , Doença de Alzheimer/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...