Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Opt Soc Am A Opt Image Sci Vis ; 40(3): 479-491, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37133017

RESUMO

In this paper, a synthetic hyperspectral video database is introduced. Since it is impossible to record ground-truth hyperspectral videos, this database offers the possibility to leverage the evaluation of algorithms in diverse applications. For all scenes, depth maps are provided as well to yield the position of a pixel in all spatial dimensions as well as the reflectance in spectral dimension. Two novel algorithms for two different applications are proposed to prove the diversity of applications that can be addressed by this novel database. First, a cross-spectral image reconstruction algorithm is extended to exploit the temporal correlation between two consecutive frames. The evaluation using this hyperspectral database shows an increase in peak signal-to-noise ratio (PSNR) of up to 5.6 dB dependent on the scene. Second, a hyperspectral video coder is introduced, which extends an existing hyperspectral image coder by exploiting temporal correlation. The evaluation shows rate savings of up to 10% depending on the scene.

2.
J Opt Soc Am A Opt Image Sci Vis ; 37(11): 1695-1710, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33175746

RESUMO

Light spectra are a very important source of information for diverse classification problems, e.g., for discrimination of materials. To lower the cost of acquiring this information, multispectral cameras are used. Several techniques exist for estimating light spectra out of multispectral images by exploiting properties about the spectrum. Unfortunately, especially when capturing multispectral videos, the images are heavily affected by noise due to the nature of limited exposure times in videos. Therefore, models that explicitly try to lower the influence of noise on the reconstructed spectrum are highly desirable. Hence, a novel reconstruction algorithm is presented. This novel estimation method is based on the guided filtering technique that preserves basic structures, while using spatial information to reduce the influence of noise. The evaluation based on spectra of natural images reveals that this new technique yields better quantitative and subjective results in noisy scenarios than other state-of-the-art spatial reconstruction methods. Specifically, the proposed algorithm lowers the mean squared error and the spectral angle up to 46% and 35% in noisy scenarios, respectively. Furthermore, it is shown that the proposed reconstruction technique works out of the box and does not need any calibration or training by reconstructing spectra from a real-world multispectral camera with nine channels.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32970597

RESUMO

Recently, many new applications arose for multispectral and hyper-spectral imaging. Besides modern biometric systems for identity verification, also agricultural and medical applications came up, which measure the health condition of plants and humans. Despite the growing demand, the acquisition of multi-spectral data is up to the present complicated. Often, expensive, inflexible, or low resolution acquisition setups are only obtainable for specific professional applications. To overcome these limitations, a novel camera array for multi-spectral imaging is presented in this article for generating consistent multispectral videos. As differing spectral images are acquired at various viewpoints, a geometrically constrained multi-camera sensor layout is introduced, which enables the formulation of novel registration and reconstruction algorithms to globally set up robust models. On average, the novel acquisition approach achieves a gain of 2.5 dB PSNR compared to recently published multi-spectral filter array imaging systems. At the same time, the proposed acquisition system ensures not only a superior spatial, but also a high spectral, and temporal resolution, while filters are flexibly exchangeable by the user depending on the application. Moreover, depth information is generated, so that 3D imaging applications, e.g., for augmented or virtual reality, become possible. The proposed camera array for multi-spectral imaging can be set up using off-the-shelf hardware, which allows for a compact design and employment in, e.g., mobile devices or drones, while being cost-effective.

4.
Heliyon ; 5(10): e02560, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31667401

RESUMO

The usage of embedded systems is omnipresent in our everyday life, e.g., in smartphones, tablets, or automotive devices. These devices are able to deal with challenging image processing tasks like real-time detection of faces or high dynamic range imaging. However, the size and computational power of an embedded system is a limiting demand. To help students understanding these challenges, a new lab course "Image and Video Signal Processing on Embedded Systems" has been developed and is presented in this paper. The Raspberry Pi 3 Model B and the open source programming language Python have been chosen, because of low hardware cost and free availability of the programming language. In this lab course the students learn handling both hard- and software, Python as an alternative to MATLAB, the image signal processing path, and how to develop an embedded image processing system, from the idea to implementation and debugging. At the beginning of the lab course an introduction to Python and the Raspberry Pi is given. After that, various experiments like the implementation of a corner detector and creation of a panorama image are prepared in the lab course. Students participating in the lab course develop a profound understanding of embedded image and video processing algorithms which is verified by comparing questionnaires at the beginning and the end of the lab course. Moreover, compared to a peer group attending an accompanying lecture with exercises, students having participated in this lab course outperform their peer group in the exam for the lecture by 0.5 on a five-point scale.

5.
IEEE Trans Image Process ; 27(9): 4314-4329, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29870350

RESUMO

This paper considers online robust principal component analysis (RPCA) in time-varying decomposition problems such as video foreground-background separation. We propose a compressive online RPCA algorithm that decomposes recursively a sequence of data vectors (e.g., frames) into sparse and low-rank components. Different from conventional batch RPCA, which processes all the data directly, our approach considers a small set of measurements taken per data vector (frame). Moreover, our algorithm can incorporate multiple prior information from previous decomposed vectors via proposing an - minimization method. At each time instance, the algorithm recovers the sparse vector by solving the - minimization problem-which promotes not only the sparsity of the vector but also its correlation with multiple previously recovered sparse vectors-and, subsequently, updates the low-rank component using incremental singular value decomposition. We also establish theoretical bounds on the number of measurements required to guarantee successful compressive separation under the assumptions of static or slowly changing low-rank components. We evaluate the proposed algorithm using numerical experiments and online video foreground-background separation experiments. The experimental results show that the proposed method outperforms the existing methods.

6.
IEEE Trans Image Process ; 24(11): 4540-55, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26259243

RESUMO

Even though image signals are typically defined on a regular 2D grid, there also exist many scenarios where this is not the case and the amplitude of the image signal only is available for a non-regular subset of pixel positions. In such a case, a resampling of the image to a regular grid has to be carried out. This is necessary since almost all algorithms and technologies for processing, transmitting or displaying image signals rely on the samples being available on a regular grid. Thus, it is of great importance to reconstruct the image on this regular grid, so that the reconstruction comes closest to the case that the signal has been originally acquired on the regular grid. In this paper, Frequency Selective Reconstruction is introduced for solving this challenging task. This algorithm reconstructs image signals by exploiting the property that small areas of images can be represented sparsely in the Fourier domain. By further considering the basic properties of the optical transfer function of imaging systems, a sparse model of the signal is iteratively generated. In doing so, the proposed algorithm is able to achieve a very high reconstruction quality, in terms of peak signal-to-noise ratio (PSNR) and structural similarity measure as well as in terms of visual quality. The simulation results show that the proposed algorithm is able to outperform state-of-the-art reconstruction algorithms and gains of more than 1 dB PSNR are possible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...