Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Chem ; 11: 1174109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123871

RESUMO

Phytates are a type of organophosphorus compound produced in terrestrial ecosystems by plants. In plant feeds, phytic acid and its salt form, phytate, account for 60%-80% of total phosphorus. Because phytate is a polyanionic molecule, it can chelate positively charged cations such as calcium, iron, and zinc. Due to its prevalence in vegetal tissues and the fact that people consume plants, phytate was first considered a potential health benefit. This updated review aims to summarize the current data on the results of clinical trials of phytates on human health, highlighting both beneficial and undesirable effects. To obtain these updated data, published papers in electronic databases such as PubMed/MedLine, TRIP database, Wiley, Google Scholar, Baidu, and Scopus were searched. Study results have shown that phytate can have beneficial health effects such as antioxidant, anticancer potential and reduction of pathological calcifications in blood vessels and organs; but also, negative effects by reducing the absorption of minerals important for maintaining the homeostasis of the human body. According to these recent results derived from recent clinical studies, phytates may be a potential natural source for health benefits. To improve clinical efficacy and human health benefits, further dose-response studies are needed to determine effective therapeutic doses and potential interactions with conventional drugs.

2.
Oxid Med Cell Longev ; 2022: 2910411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35096265

RESUMO

The roots, leaves, and seeds of Lepidium sativum L., popularly known as Garden cress in different regions, have high economic importance; although, the crop is particularly cultivated for the seeds. In traditional medicine, this plant has been reported to possess various biological activities. This review is aimed at providing updated and critical scientific information about the traditional, nutritional, phytochemical, and biological activities of L. sativum. In addition, the geographic distribution is also reviewed. The comprehensive literature search was carried out with the help of different search engines PubMed, Web of Science, and Science Direct. This review highlighted the importance of L. sativum as an edible herb that possesses a wide range of therapeutic properties along with high nutritional values. Preclinical studies (in vitro and in vivo) displayed anticancer, hepatoprotective, antidiabetic, hypoglycemic, antioxidant, antimicrobial, gastrointestinal, and fracture/bone healing activities of L. sativum and support the clinical importance of plant-derived bioactive compounds for the treatment of different diseases. Screening of literature revealed that L. sativum species and their bioactive compounds may be a significant source for new drug compounds and also could be used against malnutrition. Further clinical trials are needed to effectively assess the actual potential of the species and its bioactive compounds.


Assuntos
Suplementos Nutricionais/análise , Lepidium sativum/química , Compostos Fitoquímicos/química , Extratos Vegetais/química
3.
Front Pharmacol ; 12: 665031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220504

RESUMO

Quercetin (QUR) is a natural bioactive flavonoid that has been lately very studied for its beneficial properties in many pathologies. Its neuroprotective effects have been demonstrated in many in vitro studies, as well as in vivo animal experiments and human trials. QUR protects the organism against neurotoxic chemicals and also can prevent the evolution and development of neuronal injury and neurodegeneration. The present work aimed to summarize the literature about the neuroprotective effect of QUR using known database sources. Besides, this review focuses on the assessment of the potential utilization of QUR as a complementary or alternative medicine for preventing and treating neurodegenerative diseases. An up-to-date search was conducted in PubMed, Science Direct and Google Scholar for published work dealing with the neuroprotective effects of QUR against neurotoxic chemicals or in neuronal injury, and in the treatment of neurodegenerative diseases. Findings suggest that QUR possess neuropharmacological protective effects in neurodegenerative brain disorders such as Alzheimer's disease, Amyloid ß peptide, Parkinson's disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis. In summary, this review emphasizes the neuroprotective effects of QUR and its advantages in being used in complementary medicine for the prevention and treatment o of different neurodegenerative diseases.

4.
Plants (Basel) ; 10(4)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808498

RESUMO

One of the most important compounds that exhibit a wide range of biological activities with especially strong antioxidant action are plant polyphenols. In the course of the experiment, the dose-dependent effects of polyphenols-rich extracts isolated from the Lamiaceae family Kazakhstani plants were studied on the processes of lipid peroxidation and on the degree of erythrocytes hemolysis. The activity of aqueous-ethanolic extracts from dried parts of plants, such as Origanum vulgare, Ziziphora bungeana, Dracocephalum integrifolium, Mentha piperita, Leonurus turkestanicus, Thymus serpyllum, and Salvia officinalis, was studied in a Wistar rat model. Lipid peroxidation (LPO) in liver microsomes was assessed by measuring malondialdehyde content in the form of thiobarbituric acid-reacting substances (TBARS). Estimation of osmotic resistance of isolated erythrocytes was evaluated based on hemoglobin absorbance. The amount of total phenolics in the extracts was measured using the Folin-Ciocalteu reagent method. Based on the results, Thymus serpyllum extract exhibited a significantly higher antioxidant activity (IC50 = 3.3 ± 0.7) compared to other plant extracts. Accordingly, among the extracts studied, those from Salvia officinalis, Thymus serpyllum, and Origanum vulgare show the most pronounced membrane-stabilizing activity. Antioxidant and antihemolytic properties of green tea and Origanum vulgare extract mixtures were similar to that of each individual plant extract. Similar results were obtained when the green tea extract was mixed with Mentha piperita, Ziziphora bungeana, and Dracocephalum integrifolium extracts, indicating no discernible synergistic interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...