Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 196: 114207, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325664

RESUMO

The discovery that the bacterial defense mechanism, CRISPR-Cas9, can be reprogrammed as a gene editing tool has revolutionized the field of gene editing. CRISPR-Cas9 can introduce a double-strand break at a specific targeted site within the genome. Subsequent intracellular repair mechanisms repair the double strand break that can either lead to gene knock-out (via the non-homologous end-joining pathway) or specific gene correction in the presence of a DNA template via homology-directed repair. With the latter, pathological mutations can be cut out and repaired. Advances are being made to utilize CRISPR-Cas9 in patients by incorporating its components into non-viral delivery vehicles that will protect them from premature degradation and deliver them to the targeted tissues. Herein, CRISPR-Cas9 can be delivered in the form of three different cargos: plasmid DNA, RNA or a ribonucleoprotein complex (RNP). We and others have recently shown that Cas9 RNP can be efficiently formulated in lipid-nanoparticles (LNP) leading to functional delivery in vitro. In this study, we compared LNP encapsulating the mRNA Cas9, sgRNA and HDR template against LNP containing Cas9-RNP and HDR template. Former showed smaller particle sizes, better protection against degrading enzymes and higher gene editing efficiencies on both reporter HEK293T cells and HEPA 1-6 cells in in vitro assays. Both formulations were additionally tested in female Ai9 mice on biodistribution and gene editing efficiency after systemic administration. LNP delivering mRNA Cas9 were retained mainly in the liver, with LNP delivering Cas9-RNPs additionally found in the spleen and lungs. Finally, gene editing in mice could only be concluded for LNP delivering mRNA Cas9 and sgRNA. These LNPs resulted in 60 % gene knock-out in hepatocytes. Delivery of mRNA Cas9 as cargo format was thereby concluded to surpass Cas9-RNP for application of CRISPR-Cas9 for gene editing in vitro and in vivo.


Assuntos
Edição de Genes , Lipossomos , Nanopartículas , Humanos , Feminino , Camundongos , Animais , Edição de Genes/métodos , Sistemas CRISPR-Cas , Proteína 9 Associada à CRISPR/genética , RNA Guia de Sistemas CRISPR-Cas , RNA Mensageiro/genética , Células HEK293 , Distribuição Tecidual , DNA
2.
Langmuir ; 39(34): 12132-12143, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37581242

RESUMO

Core-crosslinked polymeric micelles (CCPMs) are an attractive class of nanocarriers for drug delivery. Two crosslinking approaches to form CCPMs exist: either via a low-molecular-weight crosslinking agent to connect homogeneous polymer chains with reactive handles or via cross-reactive handles on polymers to link them to each other (complementary polymers). Previously, CCPMs based on methoxy poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) methacrylamide-lactate] (mPEG-b-PHPMAmLacn) modified with thioesters were crosslinked via native chemical ligation (NCL, a reaction between a cysteine residue and thioester resulting in an amide bond) using a bifunctional cysteine containing crosslinker. These CCPMs are degradable under physiological conditions due to hydrolysis of the ester groups present in the crosslinks. The rapid onset of degradation observed previously, as measured by the light scattering intensity, questions the effectiveness of crosslinking via a bifunctional agent. Particularly due to the possibility of intrachain crosslinks that can occur using such a small crosslinker, we investigated the degradation mechanism of CCPMs generated via both approaches using various analytical techniques. CCPMs based on complementary polymers degraded slower at pH 7.4 and 37 °C than CCPMs with a crosslinker (the half-life of the light scattering intensity was approximately 170 h versus 80 h, respectively). Through comparative analysis of the degradation profiles of the two different CCPMs, we conclude that partially ineffective intrachain crosslinks are likely formed using the small crosslinker, which contributed to more rapid CCPM degradation. Overall, this study shows that the type of crosslinking approach can significantly affect degradation kinetics, and this should be taken into consideration when developing new degradable CCPM platforms.


Assuntos
Cisteína , Micelas , Polímeros/química , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...