Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 606(Pt 1): 860-872, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34425273

RESUMO

HYPOTHESIS: Sodium-montmorillonite (Na-Mt) particles are geometrically anisometric that carry a pH dependent anisotropic surface charge. Therefore, it should be possible to manipulate the particle-particle interaction of colloidal range Na-Mt suspensions through pH changes which in turn should alter the soft glassy dynamics of Na-Mt suspensions. EXPERIMENTS: Rheological experiments were used to probe the impact of pH mediated colloidal particle-particle interaction on the physical aging, linear viscoelastic response, and yield stress behavior of Na-Mt suspension. FINDINGS: The temporal evolution of the storage modulus (G') was stronger in the acid regime (pH < 9.5) than the base (pH ≥ 9.5) pH regime. Horizontal shifting of the aging curves in the acid and base regimes led to aging time-H+ concentration and aging time-OH- concentration superposition. An aging time-Na-Mt concentration superposition was also observed in both pH regimes. The critical stress associated with the viscosity bifurcation behavior increased linearly with G' but with different slopes for acid and base regime. We propose that positively charged patches on the Na-Mt particle edge merge with the characteristic surface as a function of H+ ions in the system. This leads to a strongly associated microstructure at low pH and a relatively weak but associated microstructure at natural pH, hence confirming the hypothesis.


Assuntos
Suspensões , Argila , Concentração de Íons de Hidrogênio , Reologia , Viscosidade
2.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34021079

RESUMO

Slow-moving arctic soils commonly organize into striking large-scale spatial patterns called solifluction terraces and lobes. Although these features impact hillslope stability, carbon storage and release, and landscape response to climate change, no mechanistic explanation exists for their formation. Everyday fluids-such as paint dripping down walls-produce markedly similar fingering patterns resulting from competition between viscous and cohesive forces. Here we use a scaling analysis to show that soil cohesion and hydrostatic effects can lead to similar large-scale patterns in arctic soils. A large dataset of high-resolution solifluction lobe spacing and morphology across Norway supports theoretical predictions and indicates a newly observed climatic control on solifluction dynamics and patterns. Our findings provide a quantitative explanation of a common pattern on Earth and other planets, illuminating the importance of cohesive forces in landscape dynamics. These patterns operate at length and time scales previously unrecognized, with implications toward understanding fluid-solid dynamics in particulate systems with complex rheology.

3.
Front Environ Sci ; 82020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33269243

RESUMO

As the 21st century uncovers ever-increasing volumes of asbestos and asbestos-contaminated waste, we need a new way to stop 'grandfather's problem' from becoming that of our future generations. The production of inexpensive, mechanically strong, heat resistant building materials containing asbestos has inevitably led to its use in many public and residential buildings globally. It is therefore not surprising that since the asbestos boom in the 1970s, some 30 years later, the true extent of this hidden danger was exposed. Yet, this severely toxic material continues to be produced and used in some countries, and in others the disposal options for historic uses - generally landfill - are at best unwieldy and at worst insecure. We illustrate the global scale of the asbestos problem via three case studies which describe various removal and/or end disposal issues. These case studies from both industrialised and island nations demonstrate the potential for the generation of massive amounts of asbestos contaminated soil. In each case, the final outcome of the project was influenced by factors such as cost and land availability, both increasing issues, worldwide. The reduction in the generation of asbestos containing materials will not absolve us from the necessity of handling and disposal of contaminated land. Waste treatment which relies on physico-chemical processes is expensive and does not contribute to a circular model economy ideal. Although asbestos is a mineral substance, there are naturally occurring biological-mediated processes capable of degradation (such as bioweathering). Therefore, low energy options, such as bioremediation, for the treatment for asbestos contaminated soils are worth exploring. We outline evidence pointing to the ability of microbe and plant communities to remove from asbestos the iron that contributes to its carcinogenicity. Finally, we describe the potential for a novel concept of creating ecosystems over asbestos landfills ('activated landfills') that utilize nature's chelating ability to degrade this toxic product effectively.

4.
Proc Natl Acad Sci U S A ; 117(7): 3375-3381, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32019883

RESUMO

When a colloidal suspension is dried, capillary pressure may overwhelm repulsive electrostatic forces, assembling aggregates that are out of thermal equilibrium. This poorly understood process confers cohesive strength to many geological and industrial materials. Here we observe evaporation-driven aggregation of natural and synthesized particulates, probe their stability under rewetting, and measure bonding strength using an atomic force microscope. Cohesion arises at a common length scale (∼5 µm), where interparticle attractive forces exceed particle weight. In polydisperse mixtures, smaller particles condense within shrinking capillary bridges to build stabilizing "solid bridges" among larger grains. This dynamic repeats across scales, forming remarkably strong, hierarchical clusters, whose cohesion derives from grain size rather than mineralogy. These results may help toward understanding the strength and erodibility of natural soils, and other polydisperse particulates that experience transient hydrodynamic forces.


Assuntos
Coloides/química , Solo/química , Hidrodinâmica , Tamanho da Partícula , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...