Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(1-2): 015204, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38366402

RESUMO

Shot-to-shot electron beam pointing instability in the plasma bubble, defined here as electron beam pointing jitter (EBJ), is a long-standing problem that limits the potential of the laser wakefield accelerator (LWFA) in a range of demanding applications. In general, EBJ is caused by variations in laser and plasma parameters from shot to shot, although the exact physical mechanism by which EBJ grows in the plasma wave remains unclear. In this work we theoretically investigate the fundamental physics of EBJ inside the plasma bubble and show how the intrinsic betatron oscillation can act as an amplifier to enhance EBJ growth. The analytical formulas for electron trajectory, pointing angle, and EBJ are derived from the basic momentum equation of an electron and verified numerically. It is shown that the shot-to-shot fluctuations of the laser and plasma parameters, such as laser strength, focus, and carrier-envelope phase, as well as the ambient plasma density and profile, lead to EBJ. The evolution of EBJ is dictated by the dynamics of the plasma bubble. Two amplification processes of the betatron oscillation are found in the rapidly evolving bubbles and play important roles in EBJ growth. The first is driven by a linear resonance in the wobbling bubble due to the coupling of the betatron oscillation and the bubble centroid oscillation. The second is a parametric resonance seen in the breathing bubble, where EBJ grows exponentially due to the strong frequency modulation of the betatron oscillation. Their characteristic functions, growth rates, and resonance conditions are deduced analytically and validated numerically. Finally, we also studied how radiation reaction affects EBJ. Our research provides a clear understanding of the basics of EBJ dynamics in LWFA and will help improve the use of LWFA in demanding applications.

2.
Phys Rev Lett ; 129(27): 274801, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36638283

RESUMO

A new scheme of ion acceleration by crossing two ultraintense laser pulses in a near-critical relativistically transparent plasma is proposed. One laser, acting as a trigger, preaccelerates background ions in its radial direction via the laser-driven shock. Another crossed laser drives a comoving snowplow field which traps some of the preaccelerated ions and then efficiently accelerates them to high energies up to a few giga-electron-volts. The final output ion beam is collimated and quasimonoenergetic due to a momentum-selection mechanism. Particle-in-cell simulations and theoretical analysis show that the scheme is feasible and robust.

3.
Phys Rev Lett ; 122(20): 204802, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31172747

RESUMO

Scattering of ultraintense short laser pulses off relativistic electrons allows one to generate a large number of X- or gamma-ray photons with the expense of the spectral width-temporal pulsing of the laser inevitable leads to considerable spectral broadening. In this Letter, we describe a simple method to generate optimized laser pulses that compensate the nonlinear spectrum broadening and can be thought of as a superposition of two oppositely linearly chirped pulses delayed with respect to each other. We develop a simple analytical model that allows us to predict the optimal parameters of such a two-pulse-the delay, amount of chirp, and relative phase-for generation of a narrow-band γ-ray spectrum. Our predictions are confirmed by numerical optimization and simulations including three-dimensional effects.

4.
Phys Rev Lett ; 120(4): 044802, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29437462

RESUMO

A description of the spectral and angular distributions of Compton scattered light in collisions of intense laser pulses with high-energy electrons is unwieldy and usually requires numerical simulations. However, due to the large number of parameters affecting the spectra such numerical investigations can become computationally expensive. Using methods of catastrophe theory we predict higher-dimensional caustics in the spectra of the Compton scattered light, which are associated with bright narrow-band spectral lines, and in the simplest case can be controlled by the value of the linear chirp of the pulse. These findings require no full-scale calculations and have direct consequences for the photon yield enhancement of future nonlinear Compton scattering x-ray or gamma-ray sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...