Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 104(11): 5107-5117, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32242263

RESUMO

In forest regeneration areas, alongside roads and railways, under electric power lines and above gas pipe lines, there is a need for regular sprout control. A biocontrol method against broadleaved sprouting with formulations including the decay fungus Chondrostereum purpureum (Pers. Ex Fr.) Pouzar has been shown to be effective. Yet, heavy rain during spreading of this fungal inoculum on freshly cut stumps may affect the efficacy of the treatment, i.e., stump mortality during the following years. Thus, we performed an experiment where freshly cut birch stump surfaces (Betula pendula Roth and Betula pubescens Ehrh.) were treated with fungal inoculum under heavy irrigation and without it. Furthermore, two different adjuvants which aimed to fix the fungal inoculum to freshly cut stumps during irrigation and to protect against solar radiation were tested. Our results revealed that the artificial rainstorm treatment caused a delay in the efficacy of C. purpureum, but after three growing seasons, there was no significant difference in the mortality of birch stumps treated under irrigation or without it (stump mortalities 74 and 86%, respectively). Adjuvants did not improve the efficacy in stumps treated under irrigation nor in those treated without irrigation. KEY POINTS: • Heavy rain delayed the sprout control efficacy of a fungus Chondrostereum purpureum. • Final efficacy of formulations was the same in wet and dry conditions. • No additional adjuvants are needed to improve formulations.


Assuntos
Agaricales/fisiologia , Betula/microbiologia , Agentes de Controle Biológico , Chuva , Plântula/microbiologia , Taiga , Betula/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento
2.
Mycorrhiza ; 25(4): 311-24, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25348909

RESUMO

A silica-based propagation medium was developed for large-scale production of ectomycorrhizal (ECM) fungal inoculum by solid state fermentation. Development of the medium was started by screening for an optimal growth medium among six different semisynthetic agar media traditionally used in cultivation of ECM fungi. The majority (65 %) of the twenty tested ECM fungal strains that typically colonize Norway spruce (Picea abies) seedlings grew best on modified Melin-Norkrans (MMN) medium with reduced sugar content (½MMN). In order to develop a nutritionally similar medium for large-scale cultivation of the ECM fungi, we chose silica to form a solid matrix and light brewery malt extract to provide nutrients. The medium was supplemented with a commercial humic acid product that was shown to boost fungal growth. The optimal concentration of the constituents was screened for in two assays by determining the growth rates of seven potential inoculant ECM fungal strains (Amphinema sp., Cenococcum geophilum, Hebeloma sp., Meliniomyces bicolor, Paxillus involutus, Piloderma byssinum, and Tylospora asterophora). As a result, we composed a silica-based mass propagation medium (pH 5.8) containing 2.5 % brewery malt extract and 0.5 g/l humic acid product Lignohumate AM. This medium is easily produced and supported good growth of even the slowly growing and rarely studied Athelioid ECM strains. Furthermore, root systems of Norway spruce nursery seedlings were colonized by the tested ECM fungi by using solid inoculum formulated from the silica medium.


Assuntos
Meios de Cultura/química , Micorrizas/fisiologia , Picea/crescimento & desenvolvimento , Picea/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Micorrizas/classificação , Noruega
3.
Biotechnol Lett ; 30(2): 253-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17891458

RESUMO

Phlebiopsis gigantea fungus used in biological control of root rot is currently cultivated commercially in disposable, sterilizable plastic bags. A novel packed bed bioreactor was designed for cultivating P. gigantea and compared to the plastic bag method and to a tray bioreactor. The spore viability of 5.4 x 10(6) c.f.u./g obtained with the packed bed bioreactor was of the same order of magnitude as the viabilities obtained with the other cultivation methods. Furthermore, the packed bed bioreactor was less time and space consuming and easier to operate than the tray bioreactor.


Assuntos
Reatores Biológicos/economia , Biotecnologia/instrumentação , Biotecnologia/métodos , Fungos/crescimento & desenvolvimento , Biotecnologia/economia , Controle Biológico de Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...