Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 43(37): 6430-6446, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37604688

RESUMO

Auditory perception is fundamental to human development and communication. However, no long-term studies have been performed on the plasticity of the auditory system as a function of musical training from childhood to adulthood. The long-term interplay between developmental and training-induced neuroplasticity of auditory processing is still unknown. We present results from AMseL (Audio and Neuroplasticity of Musical Learning), the first longitudinal study on the development of the human auditory system from primary school age until late adolescence. This 12-year project combined neurologic and behavioral methods including structural magnetic resonance imaging (MRI), magnetoencephalography (MEG), and auditory tests. A cohort of 112 typically developing participants (51 male, 61 female), classified as "musicians" (n = 66) and "nonmusicians" (n = 46), was tested at five measurement timepoints. We found substantial, stable differences in the morphology of auditory cortex (AC) between musicians and nonmusicians even at the earliest ages, suggesting that musical aptitude is manifested in macroscopic neuroanatomical characteristics. Maturational plasticity led to a continuous increase in white matter myelination and systematic changes of the auditory evoked P1-N1-P2 complex (decreasing latencies, synchronization effects between hemispheres, and amplitude changes) regardless of musical expertise. Musicians showed substantial training-related changes at the neurofunctional level, in particular more synchronized P1 responses and bilaterally larger P2 amplitudes. Musical training had a positive influence on elementary auditory perception (frequency, tone duration, onset ramp) and pattern recognition (rhythm, subjective pitch). The observed interplay between "nature" (stable biological dispositions and natural maturation) and "nurture" (learning-induced plasticity) is integrated into a novel neurodevelopmental model of the human auditory system.Significance Statement We present results from AMseL (Audio and Neuroplasticity of Musical Learning), a 12-year longitudinal study on the development of the human auditory system from childhood to adulthood that combined structural magnetic resonance imaging (MRI), magnetoencephalography (MEG), and auditory discrimination and pattern recognition tests. A total of 66 musicians and 46 nonmusicians were tested at five timepoints. Substantial, stable differences in the morphology of auditory cortex (AC) were found between the two groups even at the earliest ages, suggesting that musical aptitude is manifested in macroscopic neuroanatomical characteristics. We also observed neuroplastic and perceptual changes with age and musical practice. This interplay between "nature" (stable biological dispositions and natural maturation) and "nurture" (learning-induced plasticity) is integrated into a novel neurodevelopmental model of the human auditory system.


Assuntos
Córtex Auditivo , Música , Criança , Adolescente , Humanos , Feminino , Masculino , Adulto Jovem , Estudos Longitudinais , Aprendizagem , Magnetoencefalografia
2.
Ann N Y Acad Sci ; 1517(1): 176-190, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36114664

RESUMO

Although there is strong evidence for the positive effects of musical training on auditory perception, processing, and training-induced neuroplasticity, there is still little knowledge on the auditory and neurophysiological short-term plasticity through listening training. In a sample of 37 adolescents (20 musicians and 17 nonmusicians) that was compared to a control group matched for age, gender, and musical experience, we conducted a 2-week active listening training (AULOS: Active IndividUalized Listening OptimizationS). Using magnetoencephalography and psychoacoustic tests, the short-term plasticity of auditory evoked fields and auditory skills were examined in a pre-post design, adapted to the individual neuro-auditory profiles. We found bilateral, but more pronounced plastic changes in the right auditory cortex. Moreover, we observed synchronization of the auditory evoked P1, N1, and P2 responses and threefold larger amplitudes of the late P2 response, similar to the reported effects of musical long-term training. Auditory skills and thresholds benefited largely from the AULOS training. Remarkably, after training, the mean thresholds improved by 12 dB for bone conduction and by 3-4 dB for air conduction. Thus, our findings indicate a strong positive influence of active listening training on neural auditory processing and perception in adolescence, when the auditory system is still developing.


Assuntos
Córtex Auditivo , Música , Adolescente , Humanos , Recém-Nascido , Percepção Auditiva/fisiologia , Córtex Auditivo/fisiologia , Magnetoencefalografia , Plasticidade Neuronal/fisiologia , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica
3.
Front Psychol ; 13: 895063, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783693

RESUMO

Learning Mandarin has become increasingly important in the Western world but is rather difficult to be learnt by speakers of non-tone languages. Since tone language learning requires very precise tonal ability, we set out to test whether musical skills, musical status, singing ability, singing behavior during childhood, basic auditory skills, and short-term memory ability contribute to individual differences in Mandarin performance. Therefore, we developed Mandarin tone discrimination and pronunciation tasks to assess individual differences in adult participants' (N = 109) tone language ability. Results revealed that short-term memory capacity, singing ability, pitch perception preferences, and tone frequency (high vs. low tones) were the most important predictors, which explained individual differences in the Mandarin performances of our participants. Therefore, it can be concluded that training of basic auditory skills, musical training including singing should be integrated in the educational setting for speakers of non-tone languages who learn tone languages such as Mandarin.

4.
Neurobiol Lang (Camb) ; 2(3): 389-415, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37213255

RESUMO

A common practice in the cognitive neurosciences is to investigate population-typical phenomena, treating individuals as equal except for a few outliers that are usually discarded from analyses or that disappear on group-level patterns. Only a few studies to date have captured the heterogeneity of language processing across individuals as so-called "individual differences"; fewer have explicitly researched language aptitude, which designates an individual's ability for acquiring foreign languages. Existing studies show that, relative to average learners, very gifted language learners display different task-related patterns of functional activation and connectivity during linguistic tasks, and structural differences in white and grey matter morphology, and in white matter connectivity. Despite growing interest in language aptitude, there is no recent comprehensive review, nor a theoretical model to date that includes the neural level. To fill this gap, we review neuroscientific research on individual differences in language learning and language aptitude and present a first, preliminary neurocognitive model of language aptitude. We suggest that language aptitude could arise from an advantageous neurocognitive profile, which leads to high intrinsic motivation and proactive engagement in language learning activities. On the neural level, interindividual differences in the morphology of the bilateral auditory cortex constrain individual neural plasticity, as is evident in the speed and efficiency of language learning. We suggest that language learning success is further dependent upon highly efficient auditory-motor connections (speech-motor networks) and the structural characteristics of dorsal and ventral fibre tracts during language learning.

5.
Sci Rep ; 9(1): 15185, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645633

RESUMO

Working memory capacity, an essential prerequisite for language learning and the development of arithmetic skills, has been reported as deficient in children with reading disorder (RD) and attention deficit (hyperactivity) disorder (AD(H)D). However, few studies to date have explored potential associations of working memory impairments and foreign language learning, mathematical skills and school achievement in these groups, in particular in children with a comorbidity of both. In the present study, we assessed working memory, language learning, arithmetic fluency and academic achievement in children (N = 166; Mage = 14.3, range 8-18 y), including typically-developing children (n = 89), subjects with RD (n = 27), AD(H)D (n = 43), and a comorbidity (n = 15). While children with AD(H)D performed similar to typically developing children on all tasks, RD children performed weakly on various language learning and working memory tasks, with major deficits in non-word span, phonetic memory and vocabulary learning. Combining weaknesses of the two groups, children with a comorbidity further performed significantly worse on arithmetic skills, learning of sound-symbol combinations and simple digit span forward. The findings suggest a reconsideration of working memory and learning impairments in AD(H)D, while highlighting the additional weaknesses of comorbid children and pointing out severe foreign language learning difficulties in RD children.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/complicações , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Comportamento , Cognição/fisiologia , Dislexia/complicações , Dislexia/fisiopatologia , Adolescente , Criança , Análise Discriminante , Feminino , Humanos , Idioma , Masculino , Memória de Curto Prazo , Estatísticas não Paramétricas
6.
Front Neurosci ; 13: 824, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447639

RESUMO

In two recent studies, we identified neuroanatomical and neurofunctional markers of musical aptitude, attention deficit (hyperactivity) disorder and dyslexia in the auditory cortex (AC) of children. In a subsequent study with adults, we found evidence for neuroanatomical correlates of speech imitation ability in right Heschl's gyrus (HG), a structure comprising primary and parts of secondary AC. In the present study, we aimed to verify this previously suggested link between structural variation of right HG and language aptitude in a younger population of children and teenagers (N = 42; age range: 10-16 years), while behaviorally exploring the relationship between language aptitude, working memory, arithmetic skills and musicality. Behaviorally, scores on the language aptitude battery strongly correlated with working memory and speech imitation ability. Furthermore, we found that self- and parent-reported language aptitude and school grades were closely associated with language aptitude scores. Neuroanatomical analyses revealed a significant relationship between the occurrence of multiple HGs and high gray matter (GM) volumes in right AC and high language aptitude regardless of age, gender or musical ability. Additionally, low language aptitude was associated with the occurrence of single gyri in right AC. In accordance with previous research, we suggest that right HG might be associated with language aptitude, with a stronger gyrification and higher GM volumes being beneficial for successful auditory processing and the integration of speech-related cues.

7.
Hum Brain Mapp ; 40(4): 1139-1154, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30367737

RESUMO

The primary auditory cortex (PAC) is located in the region of Heschl's gyrus (HG), as confirmed by histological, cytoarchitectonical, and neurofunctional studies. Applying cortical thickness (CTH) analysis based on high-resolution magnetic resonance imaging (MRI) and magnetoencephalography (MEG) in 60 primary school children and 60 adults, we investigated the CTH distribution of left and right auditory cortex (AC) and primary auditory source activity at the group and individual level. Both groups showed contoured regions of reduced auditory cortex (redAC) along the mediolateral extension of HG, illustrating large inter-individual variability with respect to shape, localization, and lateralization. In the right hemisphere, redAC localized more within the medial portion of HG, extending typically across HG duplications. In the left hemisphere, redAC was distributed significantly more laterally, reaching toward the anterolateral portion of HG. In both hemispheres, redAC was found to be significantly thinner (mean CTH of 2.34 mm) as compared to surrounding areas (2.99 mm). This effect was more dominant in the right hemisphere rather than in the left one. Moreover, localization of the primary component of auditory evoked activity (P1), as measured by MEG in response to complex harmonic sounds, strictly co-localized with redAC. This structure-function link was found consistently at the group and individual level, suggesting PAC to be represented by areas of reduced cortex in HG. Thus, we propose reduced CTH as an in vivo marker for identifying shape and localization of PAC in the individual brain.


Assuntos
Córtex Auditivo/anatomia & histologia , Adolescente , Adulto , Córtex Auditivo/fisiologia , Mapeamento Encefálico/métodos , Criança , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Eur J Neurosci ; 47(5): 417-426, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29368814

RESUMO

Low-frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood-oxygen-level-dependent (BOLD) signals. This raises the question if vascular BOLD oscillations (originating from blood flow in the brain) and intrinsic slow neural activity fluctuations (neural BOLD oscillations) can be differentiated. In this study, we report on two different approaches: first, on computing the phase-locking value in the frequency band 0.07-0.13 Hz between heart beat-to-beat interval (RRI) and BOLD oscillations and second, between multiple BOLD oscillations (functional connectivity) in four resting states in 23 scanner-naïve, anxious healthy subjects. The first method revealed that vascular 0.1-Hz BOLD oscillations preceded those in RRI signals by 1.7 ± 0.6 s and neural BOLD oscillations lagged RRI oscillations by 0.8 ± 0.5 s. Together, vascular BOLD oscillations preceded neural BOLD oscillations by ~90° or ~2.5 s. To verify this discrimination, connectivity patterns of neural and vascular 0.1-Hz BOLD oscillations were compared in 26 regions involved in processing of emotions. Neural BOLD oscillations revealed significant phase-coupling between amygdala and medial frontal cortex, while vascular BOLD oscillations showed highly significant phase-coupling between amygdala and multiple regions in the supply areas of the anterior and medial cerebral arteries. This suggests that not only slow neural and vascular BOLD oscillations can be dissociated but also that two strategies may exist to optimize regulation of anxiety, that is increased functional connectivity between amygdala and medial frontal cortex, and increased cerebral blood flow in amygdala and related structures.


Assuntos
Tonsila do Cerebelo/metabolismo , Transtornos de Ansiedade/metabolismo , Oxigênio/sangue , Córtex Pré-Frontal/metabolismo , Adulto , Transtornos de Ansiedade/fisiopatologia , Mapeamento Encefálico/métodos , Circulação Cerebrovascular/fisiologia , Feminino , Frequência Cardíaca/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino
9.
Front Psychol ; 8: 2096, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29250017

RESUMO

Recent research has shown that the morphology of certain brain regions may indeed correlate with a number of cognitive skills such as musicality or language ability. The main aim of the present study was to explore the extent to which foreign language aptitude, in particular phonetic coding ability, is influenced by the morphology of Heschl's gyrus (HG; auditory cortex), working memory capacity, and musical ability. In this study, the auditory cortices of German-speaking individuals (N = 30; 13 males/17 females; aged 20-40 years) with high and low scores in a number of language aptitude tests were compared. The subjects' language aptitude was measured by three different tests, namely a Hindi speech imitation task (phonetic coding ability), an English pronunciation assessment, and the Modern Language Aptitude Test (MLAT). Furthermore, working memory capacity and musical ability were assessed to reveal their relationship with foreign language aptitude. On the behavioral level, significant correlations were found between phonetic coding ability, English pronunciation skills, musical experience, and language aptitude as measured by the MLAT. Parts of all three tests measuring language aptitude correlated positively and significantly with each other, supporting their validity for measuring components of language aptitude. Remarkably, the number of instruments played by subjects showed significant correlations with all language aptitude measures and musicality, whereas, the number of foreign languages did not show any correlations. With regard to the neuroanatomy of auditory cortex, adults with very high scores in the Hindi testing and the musicality test (AMMA) demonstrated a clear predominance of complete posterior HG duplications in the right hemisphere. This may reignite the discussion of the importance of the right hemisphere for language processing, especially when linked or common resources are involved, such as the inter-dependency between phonetic and musical aptitude.

10.
Clin Neurophysiol ; 128(1): 183-193, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27912172

RESUMO

OBJECTIVES: In the brain and heart, oscillations at about 0.1Hz are conspicuous. It is therefore worthwhile to study the interaction between intrinsic BOLD oscillations (0.1Hz) and slow oscillations in heart rate interval (RRI) signals and differentiate between their neural and vascular origin. METHODS: We studied the phase-coupling with a 3T scanner with high scanning rate between BOLD signals in 22 regions and simultaneously recorded RRI oscillations in 23 individuals in two resting states. RESULTS: By applying a hierarchical cluster analysis, it was possible to separate two clusters of phase-coupling between slow BOLD and RRI oscillations in the midcingulum, one representative for neural and the other for vascular BOLD oscillations. About half of the participants revealed positive time delays characteristic for neural BOLD oscillations and neurally-driven RRI oscillations. CONCLUSIONS: The results suggest that slow vascular and neural BOLD oscillations can be differentiated and that intrinsic oscillations (0.1Hz) originate in the cingulum or its close vicinity and contribute to heart rate variability (HRV). SIGNIFICANCE: The study provides new insights into the dynamics of resting state activities, helps to explain HRV, and offers the possibility to investigate slow rhythmic neural activity changes in different brain regions without EEG recording.


Assuntos
Relógios Biológicos/fisiologia , Eletrocardiografia/métodos , Eletroencefalografia/métodos , Giro do Cíngulo/fisiologia , Frequência Cardíaca/fisiologia , Periodicidade , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino , Adulto Jovem
11.
Front Neurosci ; 10: 324, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27471442

RESUMO

Dyslexia, attention deficit hyperactivity disorder (ADHD), and attention deficit disorder (ADD) show distinct clinical profiles that may include auditory and language-related impairments. Currently, an objective brain-based diagnosis of these developmental disorders is still unavailable. We investigated the neuro-auditory systems of dyslexic, ADHD, ADD, and age-matched control children (N = 147) using neuroimaging, magnetencephalography and psychoacoustics. All disorder subgroups exhibited an oversized left planum temporale and an abnormal interhemispheric asynchrony (10-40 ms) of the primary auditory evoked P1-response. Considering right auditory cortex morphology, bilateral P1 source waveform shapes, and auditory performance, the three disorder subgroups could be reliably differentiated with outstanding accuracies of 89-98%. We therefore for the first time provide differential biomarkers for a brain-based diagnosis of dyslexia, ADHD, and ADD. The method allowed not only allowed for clear discrimination between two subtypes of attentional disorders (ADHD and ADD), a topic controversially discussed for decades in the scientific community, but also revealed the potential for objectively identifying comorbid cases. Noteworthy, in children playing a musical instrument, after three and a half years of training the observed interhemispheric asynchronies were reduced by about 2/3, thus suggesting a strong beneficial influence of music experience on brain development. These findings might have far-reaching implications for both research and practice and enable a profound understanding of the brain-related etiology, diagnosis, and musically based therapy of common auditory-related developmental disorders and learning disabilities.

12.
J Neurosci ; 34(33): 10937-49, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25122894

RESUMO

Playing a musical instrument is associated with numerous neural processes that continuously modify the human brain and may facilitate characteristic auditory skills. In a longitudinal study, we investigated the auditory and neural plasticity of musical learning in 111 young children (aged 7-9 y) as a function of the intensity of instrumental practice and musical aptitude. Because of the frequent co-occurrence of central auditory processing disorders and attentional deficits, we also tested 21 children with attention deficit (hyperactivity) disorder [AD(H)D]. Magnetic resonance imaging and magnetoencephalography revealed enlarged Heschl's gyri and enhanced right-left hemispheric synchronization of the primary evoked response (P1) to harmonic complex sounds in children who spent more time practicing a musical instrument. The anatomical characteristics were positively correlated with frequency discrimination, reading, and spelling skills. Conversely, AD(H)D children showed reduced volumes of Heschl's gyri and enhanced volumes of the plana temporalia that were associated with a distinct bilateral P1 asynchrony. This may indicate a risk for central auditory processing disorders that are often associated with attentional and literacy problems. The longitudinal comparisons revealed a very high stability of auditory cortex morphology and gray matter volumes, suggesting that the combined anatomical and functional parameters are neural markers of musicality and attention deficits. Educational and clinical implications are considered.


Assuntos
Atenção/fisiologia , Córtex Auditivo/fisiologia , Música , Plasticidade Neuronal/fisiologia , Leitura , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Córtex Auditivo/anatomia & histologia , Criança , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Tamanho do Órgão/fisiologia
13.
Hear Res ; 272(1-2): 85-94, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21073933

RESUMO

Neuroimaging studies have revealed dramatic asymmetries between the responses to temporally regular and irregular sounds in the antero-lateral part of Heschl's gyrus. For example, the magnetoencephalography (MEG) study of Krumbholz et al. [Cereb. Cortex 13, 765-772 (2003)] showed that the transition from a noise to a similar noise with sufficient temporal regularity to provoke a pitch evoked a pronounced temporal-regularity onset response (TRon response), whereas a comparable transition in the reverse direction revealed essentially no temporal-regularity offset response (TRoff response). The current paper presents a follow-up study in which the asymmetry is examined with much greater power, and the results suggest an intriguing reinterpretation of the onset/offset asymmetry. The TR-related activity in auditory cortex appears to be composed of a transient (TRon) and a TR-related sustained response (TRsus), with a highly variable TRon/TRsus amplitude ratio. The TRoff response is generally dominated by the break-down of the TRsus activity, which occurs so rapidly as to preclude the involvement of higher-level cortical processing. The time course of the TR-related activity suggests that TR processing might be involved in monitoring the environment and alerting the brain to the onset and offset of behaviourally relevant, animate sources.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva , Ruído , Periodicidade , Percepção do Tempo , Estimulação Acústica , Adulto , Limiar Auditivo , Potenciais Evocados Auditivos , Feminino , Humanos , Magnetoencefalografia , Masculino , Reconhecimento Fisiológico de Modelo , Tempo de Reação , Fatores de Tempo , Adulto Jovem
14.
J Assoc Res Otolaryngol ; 9(4): 521-31, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18704580

RESUMO

Specific predictions regarding the level dependence of auditory evoked responses near the detection limit were made in a companion modeling study (Lütkenhöner, J Assoc Res Otolaryngol 9:102-121, 2008). Here, these predictions are experimentally tested for auditory brainstem responses (ABR) to Gaussian-shaped 4-kHz tone pulses (full width at half maximum = 0.5 ms) that were presented at sound levels close to the subjective threshold. In the average of over about one million stimulus repetitions (repetition period = 16 ms), the amplitude of ABR wave V showed a smooth transition from a proportional to a logarithmic growth with increasing sound intensity. The latter type of growth corresponds to a linear increase with respect to sound level measured in decibels. Alternatively, the ABR amplitude near the detection limit may be considered a linear function of sound pressure, although-according to the model-this is only an approximation. Data and model are consistent with the view that a sensory threshold does not exist for the auditory modality, in accordance with signal detection theory. Even so, the model may be used to define a quasithreshold that is comparable to the subjective threshold.


Assuntos
Limiar Auditivo/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Modelos Neurológicos , Estimulação Acústica , Adulto , Humanos , Modelos Lineares , Valor Preditivo dos Testes , Psicoacústica , Adulto Jovem
15.
J Exp Psychol Hum Percept Perform ; 33(3): 743-51, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17563235

RESUMO

An Auditory Ambiguity Test (AAT) was taken twice by nonmusicians, musical amateurs, and professional musicians. The AAT comprised different tone pairs, presented in both within-pair orders, in which overtone spectra rising in pitch were associated with missing fundamental frequencies (F0) falling in pitch, and vice versa. The F0 interval ranged from 2 to 9 semitones. The participants were instructed to decide whether the perceived pitch went up or down; no information was provided on the ambiguity of the stimuli. The majority of professionals classified the pitch changes according to F0, even at the smallest interval. By contrast, most nonmusicians classified according to the overtone spectra, except in the case of the largest interval. Amateurs ranged in between. A plausible explanation for the systematic group differences is that musical practice systematically shifted the perceptual focus from spectral toward missing-F0 pitch, although alternative explanations such as different genetic dispositions of musicians and nonmusicians cannot be ruled out. ((c) 2007 APA, all rights reserved).


Assuntos
Percepção Auditiva , Audição/fisiologia , Música , Percepção da Altura Sonora , Competência Profissional , Adulto , Feminino , Humanos , Masculino
16.
Hear Res ; 213(1-2): 88-98, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16464550

RESUMO

The latency of the N100m component of the auditory evoked field (AEF) is sensitive to the period and spectrum of a sound. However, little attention was paid so far to the wave shape at stimulus onset, which might have biased previous results. This problem was fixed in the present study by aligning the first major peaks in the acoustic waveforms. The stimuli were harmonic tones (spectral range: 800-5000 Hz) with periods corresponding to 100, 200, 400, and 800 Hz. The frequency components were in sine, alternating or random phase. Simulations with a computational model suggest that the auditory-nerve activity is strongly affected by both the period and the relative phase of the stimulus, whereas the output of the more central pitch processor only depends on the period. Our AEF data, recorded from the right hemisphere of seven subjects, are consistent with the latter prediction: The latency of the N100m depends on the period, but not on the relative phase of the stimulus components. This suggests that the N100m reflects temporal pitch extraction, not necessarily implying that the underlying generators are directly involved in this analysis.


Assuntos
Estimulação Acústica/métodos , Potenciais Evocados Auditivos/fisiologia , Percepção da Altura Sonora/fisiologia , Análise de Variância , Membrana Basilar/fisiologia , Nervo Coclear/fisiologia , Simulação por Computador , Feminino , Humanos , Magnetoencefalografia , Masculino , Modelos Biológicos , Discriminação da Altura Tonal/fisiologia , Tempo de Reação
17.
Neuroimage ; 30(3): 927-37, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16337814

RESUMO

Regarding the net firing rate of the auditory nerve, the strongest response is to be expected when the input energy is spread as evenly as possible over the cochlea rather than being concentrated at a particular location. In some respects, this effect seems to be preserved up to the auditory cortex, but conflicting results have been reported as well. Here, we compared the auditory evoked fields (AEF) elicited by a pure tone and two sounds causing a more wide-spread cochlear activation: a piano tone as a representative of a complex tone, and bandpass noise. The stimuli had the same intensity (60 dB above threshold), and the center frequency of the noise corresponded to the fundamental frequency of the tones (1047 Hz, two octaves above middle C). Among the 26 subjects were 11 musicians and 11 persons who never played an instrument. At a latency of about 50 ms (wave P50m), the piano tone and the noise yielded stronger responses than the pure tone, in accordance with the concepts about the auditory periphery. By contrast, around 100 ms (wave N100m), the noise clearly elicited the smallest response, whereas the strongest response was elicited again by the piano tone. Musicians and non-musicians did not significantly differ concerning the responses to pure tones and piano tones. Thus, previous claims that an enhanced response to piano tones indicates use-dependent reorganization in musicians are not supported by the present data.


Assuntos
Campos Eletromagnéticos , Potenciais Evocados Auditivos/fisiologia , Magnetoencefalografia , Música , Ruído , Estimulação Acústica/métodos , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
J Acoust Soc Am ; 118(2): 946-54, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16158650

RESUMO

Temporal models of pitch are based on the assumption that the auditory system measures the time intervals between neural events, and that pitch corresponds to the most common time interval. The current experiments were designed to test whether time intervals are analyzed independently in each peripheral channel, or whether the time-interval analysis in one channel is affected by synchronous activity in other channels. Regular and irregular click trains were filtered into narrow frequency bands to produce target and flanker stimuli. The threshold for discriminating a regular target from an irregular distracter click train was measured in the presence of an irregular masker click train in the target band, as a function of the frequency separation between the target band and a flanker band. The flanker click train was either regular or irregular. The threshold for detecting the regular target was 5-7 dB lower when the flanker was regular. The data indicate that the detection of temporal regularity (and thus, pitch) involves cross-channel processes that can operate over widely separated channels. Model simulations suggest that these cross-channel processes occur after the time-interval extraction stage and that they depend on the similarity, or consistency, of the time-interval patterns in the relevant channels.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Percepção do Tempo/fisiologia , Estimulação Acústica , Adulto , Testes com Listas de Dissílabos , Feminino , Humanos , Masculino , Modelos Biológicos , Psicoacústica
19.
J Acoust Soc Am ; 115(4): 1696-704, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15101648

RESUMO

This study investigates whether the salience of the pitch associated with a single reflection of a broadband sound, such as noise, is determined by the monaural information mediated by the stimuli at the two ears, or by the relative locations of the primary sound and the reflection. Pitch strength was measured as a function of the reflection delay and the lateral displacement between the primary sound and the reflection. Thereby, lateral displacement was produced by means of interaural time differences (ITDs) in experiment 1 and interaural level differences (ILDs) in experiment 3. The results from both experiments are in accordance with the assumption that the strength of the pitch associated with a reflection is based on a central average of the internal representations of the stimuli at the two ears. This notion was corroborated by experiment 2, which showed that the results from experiment 1 could be mimicked by simply adding the stimuli from the two ears and presenting the merged stimulus identically to both ears.


Assuntos
Percepção Auditiva/fisiologia , Testes com Listas de Dissílabos , Estimulação Acústica/métodos , Adulto , Feminino , Humanos , Masculino , Mascaramento Perceptivo , Espectrografia do Som , Fatores de Tempo
20.
Neural Plast ; 9(3): 161-75, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12757369

RESUMO

We designed a melody perception experiment involving eight harmonic complex tones of missing fundamental frequencies (hidden auditory object) to study the short-term neuronal plasticity of the auditory cortex. In this experiment, the fundamental frequencies of the complex tones followed the beginning of the virtual melody of the tune "Frère Jacques". The harmonics of the complex tones were chosen so that the spectral melody had an inverse contour when compared with the virtual one. Evoked magnetic fields were recorded contralaterally to the ear of stimulation from both hemispheres. After a base line measurement, the subjects were exposed repeatedly to the experimental stimuli for 1 hour a day. All subjects reported a sudden change in the perceived melody, indicating possible reorganization of the cortical processes involved in the virtual pitch formation. After this switch in perception, a second measurement was performed. Cortical sources of the evoked gamma-band activity were significantly stronger and located more medially after a switch in perception. Independent Component Analysis revealed enhanced synchronization in the gamma-band frequency range. Comparing the gamma-band activation of both hemispheres, no laterality effects were observed. The results indicate that the primary auditory cortices are involved in the process of virtual pitch perception and that their function is modifiable by laboratory manipulation.


Assuntos
Córtex Auditivo/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Percepção da Altura Sonora/fisiologia , Adulto , Feminino , Humanos , Magnetismo , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...