Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Glob Chang Biol ; 30(1): e16983, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37905459

RESUMO

The term carbon (C) sequestration has not just become a buzzword but is something of a siren's call to scientific communicators and media outlets. Carbon sequestration is the removal of C from the atmosphere and the storage, for example, in soil. It has the potential to partially compensate for anthropogenic greenhouse gas emissions and is, therefore, an important piece in the global climate change mitigation puzzle. However, the term C sequestration is often used misleadingly and, while likely unintentional, can lead to the perpetuation of biased conclusions and exaggerated expectations about its contribution to climate change mitigation efforts. Soils have considerable potential to take up C but many are also in a state of continuous loss. In such soils, measures to build up soil C may only lead to a reduction in C losses (C loss mitigation) rather than result in real C sequestration and negative emissions. In an examination of 100 recent peer-reviewed papers on topics surrounding soil C, only 4% were found to have used the term C sequestration correctly. Furthermore, 13% of the papers equated C sequestration with C stocks. The review, further, revealed that measures leading to C sequestration will not always result in climate change mitigation when non-CO2 greenhouse gases and leakage are taken into consideration. This paper highlights potential pitfalls when using the term C sequestration incorrectly and calls for accurate usage of this term going forward. Revised and new terms are suggested to distinguish clearly between C sequestration in soils, SOC loss mitigation, negative emissions, climate change mitigation, SOC storage, and SOC accrual to avoid miscommunication among scientists and stakeholder groups in future.


Assuntos
Gases de Efeito Estufa , Solo , Mudança Climática , Sequestro de Carbono , Carbono/análise , Agricultura
4.
Glob Chang Biol ; 27(24): 6363-6380, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34543496

RESUMO

The role of soils in the global carbon cycle and in reducing GHG emissions from agriculture has been increasingly acknowledged. The '4 per 1000' (4p1000) initiative has become a prominent action plan for climate change mitigation and achieve food security through an annual increase in soil organic carbon (SOC) stocks by 0.4%, (i.e. 4‰ per year). However, the feasibility of the 4p1000 scenario and, more generally, the capacity of individual countries to implement soil carbon sequestration (SCS) measures remain highly uncertain. Here, we evaluated country-specific SCS potentials of agricultural land for 24 countries in Europe. Based on a detailed survey of available literature, we estimate that between 0.1% and 27% of the agricultural greenhouse gas (GHG) emissions can potentially be compensated by SCS annually within the next decades. Measures varied widely across countries, indicating differences in country-specific environmental conditions and agricultural practices. None of the countries' SCS potential reached the aspirational goal of the 4p1000 initiative, suggesting that in order to achieve this goal, a wider range of measures and implementation pathways need to be explored. Yet, SCS potentials exceeded those from previous pan-European modelling scenarios, underpinning the general need to include national/regional knowledge and expertise to improve estimates of SCS potentials. The complexity of the chosen SCS measurement approaches between countries ranked from tier 1 to tier 3 and included the effect of different controlling factors, suggesting that methodological improvements and standardization of SCS accounting are urgently required. Standardization should include the assessment of key controlling factors such as realistic areas, technical and practical feasibility, trade-offs with other GHG and climate change. Our analysis suggests that country-specific knowledge and SCS estimates together with improved data sharing and harmonization are crucial to better quantify the role of soils in offsetting anthropogenic GHG emissions at global level.


Assuntos
Sequestro de Carbono , Solo , Agricultura , Carbono/análise , Europa (Continente)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...