Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chronobiol Int ; 41(1): 93-104, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047486

RESUMO

Seasonal affective disorder (SAD) is a recurrent depression triggered by exposure to short photoperiods, with a subset of patients reporting hypersomnia, increased appetite, and carbohydrate craving. Dysfunction of the microbiota - gut - brain axis is frequently associated with depressive disorders, but its role in SAD is unknown. Nile grass rats (Arvicanthis niloticus) are potentially useful for exploring the pathophysiology of SAD, as they are diurnal and have been found to exhibit anhedonia and affective-like behavior in response to short photoperiods. Further, given grass rats have been found to spontaneously develop metabolic syndrome, they may be particularly susceptible to environmental triggers of metabolic dysbiosis. We conducted a 2 × 2 factorial design experiment to test the effects of short photoperiod (4 h:20 h Light:Dark (LD) vs. neutral 12:12 LD), access to a high concentration (8%) sucrose solution, and the interaction between the two, on activity, sleep, liver steatosis, and the gut microbiome of grass rats. We found that animals on short photoperiods maintained robust diel rhythms and similar subjective day lengths as controls in neutral photoperiods but showed disrupted activity and sleep patterns (i.e. a return to sleep after an initial bout of activity that occurs ~ 13 h before lights off). We found no evidence that photoperiod influenced sucrose consumption. By the end of the experiment, some grass rats were overweight and exhibited signs of non-alcoholic fatty liver disease (NAFLD) with micro- and macro-steatosis. However, neither photoperiod nor access to sucrose solution significantly affected the degree of liver steatosis. The gut microbiome of grass rats varied substantially among individuals, but most variation was attributable to parental effects and the microbiome was unaffected by photoperiod or access to sucrose. Our study indicates short photoperiod leads to disrupted activity and sleep in grass rats but does not impact sucrose consumption or exacerbate metabolic dysbiosis and NAFLD.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Transtorno Afetivo Sazonal , Humanos , Animais , Fotoperíodo , Ritmo Circadiano/fisiologia , Disbiose , Murinae/fisiologia , Sono , Carboidratos/farmacologia , Sacarose/farmacologia
2.
Front Microbiol ; 13: 781051, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685929

RESUMO

Permafrost, an important source of soil disturbance, is particularly vulnerable to climate change in Alaska where 85% of the land is underlained with discontinuous permafrost. Boreal forests, home to plants integral to subsistence diets of many Alaska Native communities, are not immune to the effects of climate change. Soil disturbance events, such as permafrost thaw, wildfires, and land use change can influence abiotic conditions, which can then affect active layer soil microbial communities. In a previous study, we found negative effects on boreal plants inoculated with microbes impacted by soil disturbance compared to plants inoculated with microbes from undisturbed soils. Here, we identify key shifts in microbial communities altered by soil disturbance using 16S rRNA gene sequencing and make connections between microbial community changes and previously observed plant growth. Additionally, we identify further community shifts in potential functional mechanisms using long read metagenomics. Across a soil disturbance gradient, microbial communities differ significantly based on the level of soil disturbance. Consistent with the earlier study, the family Acidobacteriaceae, which consists of known plant growth promoters, was abundant in undisturbed soil, but practically absent in most disturbed soil. In contrast, Comamonadaceae, a family with known agricultural pathogens, was overrepresented in most disturbed soil communities compared to undisturbed. Within our metagenomic data, we found that soil disturbance level is associated with differences in microbial community function, including mechanisms potentially involved in plant pathogenicity. These results indicate that a decrease in plant growth can be linked to changes in the microbial community and functional composition driven by soil disturbance and climate change. Together, these results build a genomic understanding of how shifting soil microbiomes may affect plant productivity and ecosystem health as the Arctic warms.

3.
Front Microbiol ; 12: 619711, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33597939

RESUMO

Recent advances in climate research have discovered that permafrost is particularly vulnerable to the changes occurring in the atmosphere and climate, especially in Alaska where 85% of the land is underlain by mostly discontinuous permafrost. As permafrost thaws, research has shown that natural and anthropogenic soil disturbance causes microbial communities to undergo shifts in membership composition and biomass, as well as in functional diversity. Boreal forests are home to many plants that are integral to the subsistence diets of many Alaska Native communities. Yet, it is unclear how the observed shifts in soil microbes can affect above ground plant communities that are relied on as a major source of food. In this study, we tested the hypothesis that microbial communities associated with permafrost thaw affect plant productivity by growing five plant species found in Boreal forests and Tundra ecosystems, including low-bush cranberry and bog blueberry, with microbial communities from the active layer soils of a permafrost thaw gradient. We found that plant productivity was significantly affected by the microbial soil inoculants. Plants inoculated with communities from above thawing permafrost showed decreased productivity compared to plants inoculated with microbes from undisturbed soils. We used metagenomic sequencing to determine that microbial communities from disturbed soils above thawing permafrost differ in taxonomy from microbial communities in undisturbed soils above intact permafrost. The combination of these results indicates that a decrease in plant productivity can be linked to soil disturbance driven changes in microbial community membership and abundance. These data contribute to an understanding of how microbial communities can be affected by soil disturbance and climate change, and how those community shifts can further influence plant productivity in Boreal forests and more broadly, ecosystem health.

4.
Microbiol Resour Announc ; 9(25)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32554792

RESUMO

Here, we describe the complete genome assemblies of seven Pseudomonas sp. isolates collected from a boreal forest soil on the University of Alaska Fairbanks campus. Using the VolTRAX v2 multiplex library preparation for Nanopore sequencing and Illumina reads for polishing, we assembled complete genome sequences for each of the isolates.

5.
Artigo em Inglês | MEDLINE | ID: mdl-30637402

RESUMO

In this report, we describe the complete genome assembly of a Pantoea agglomerans isolate, TH81, collected from a boreal forest soil associated with permafrost thaw. Using both Nanopore and Illumina sequences, we assembled four circular contigs totaling 4,983,504 bp (N 50, 4,127,869 bp), a complete chromosome with three plasmids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA