Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 136(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37129180

RESUMO

Fibronectin (FN)-binding integrins control a variety of cellular responses through Rho GTPases. The FN-binding integrins, αvß3 and α5ß1, are known to induce different effects on cell morphology and motility. Here, we report that FN-bound αvß3 integrin, but not FN-bound α5ß1 integrin, triggers the dissociation of the RhoA GEF Lfc (also known as GEF-H1 and ARHGEF2 in humans) from microtubules (MTs), leading to the activation of RhoA, formation of stress fibres and maturation of focal adhesions (FAs). Conversely, loss of Lfc expression decreases RhoA activity, stress fibre formation and FA size, suggesting that Lfc is the major GEF downstream of FN-bound αvß3 that controls RhoA activity. Mechanistically, FN-engaged αvß3 integrin activates a kinase cascade involving MARK2 and MARK3, which in turn leads to phosphorylation of several phospho-sites on Lfc. In particular, S151 was identified as the main site involved in the regulation of Lfc localization and activity. Our findings indicate that activation of Lfc and RhoA is orchestrated in FN-adherent cells in an integrin-specific manner.


Assuntos
Integrina alfa5beta1 , Integrina alfaV , Humanos , Integrina alfaV/metabolismo , Integrina alfa5beta1/metabolismo , Integrinas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosforilação , Proteína rhoA de Ligação ao GTP/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo
2.
Mol Cancer Ther ; 21(11): 1674-1688, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-35999659

RESUMO

Urological malignancies represent major challenges for clinicians, with annually rising incidences. In addition, cisplatin treatment induced long-term toxicities and the development of therapy resistance emphasize the need for novel therapeutics. In this study, we analyzed the effects of novel histone deacetylase (HDAC) and bromodomain and extraterminal domain-containing (BET) inhibitors to combine them into a potent HDAC-BET-fusion molecule and to understand their molecular mode-of-action. Treatment of (cisplatin-resistant) germ cell tumors (GCT), urothelial, renal, and prostate carcinoma cells with the HDAC, BET, and dual inhibitors decreased cell viability, induced apoptosis, and affected the cell cycle. Furthermore, a dual inhibitor considerably decreased tumor burden in GCT xenograft models. On a molecular level, correlating RNA- to ATAC-sequencing data indicated a considerable induction of gene expression, accompanied by site-specific changes of chromatin accessibility after HDAC inhibitor application. Upregulated genes could be linked to intra- and extra-cellular trafficking, cellular organization, and neuronal processes, including neuroendocrine differentiation. Regarding chromatin accessibility on a global level, an equal distribution of active or repressed DNA accessibility has been detected after HDAC inhibitor treatment, questioning the current understanding of HDAC inhibitor function. In summary, our HDAC, BET, and dual inhibitors represent a new treatment alternative for urological malignancies. Furthermore, we shed light on new molecular and epigenetic mechanisms of the tested epi-drugs, allowing for a better understanding of the underlying modes-of-action and risk assessment for the patient.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Neoplasias Urológicas , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Cromatina , Cisplatino/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Urológicas/tratamento farmacológico , Neoplasias Urológicas/genética , Animais
3.
Exp Cell Res ; 398(1): 112391, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33253712

RESUMO

Kidney Ankyrin Repeat-containing Proteins (KANKs) comprise a family of four evolutionary conserved proteins (KANK1 to 4) that localize to the belt of mature focal adhesions (FAs) where they regulate integrin-mediated adhesion, actomyosin contractility, and link FAs to the cortical microtubule stabilization complex (CMSC). The human KANK proteins were first identified in kidney and have been associated with kidney cancer and nephrotic syndrome. Here, we report the distributions and subcellular localizations of the four Kank mRNAs and proteins in mouse tissues. We found that the KANK family members display distinct and rarely overlapping expression patterns. Whereas KANK1 is expressed at the basal side of epithelial cells of all tissues tested, KANK2 expression is mainly observed at the plasma membrane and/or cytoplasm of mesenchymal cells and KANK3 exclusively in vascular and lymphatic endothelial cells. KANK4 shows the least widespread expression pattern and when present, overlaps with KANK2 in contractile cells, such as smooth muscle cells and pericytes. Our findings show that KANKs are widely expressed in a cell type-specific manner, which suggests that they have cell- and tissue-specific functions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas do Citoesqueleto/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...