Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(21): 14479-14492, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38572736

RESUMO

The sensitization of surface-anchored organic dyes on semiconductor nanocrystals through energy transfer mechanisms has received increasing attention owing to their potential applications in photodynamic therapy, photocatalysis, and photon upconversion. Here, we investigate the sensitization mechanisms through visible-light excitation of two nanohybrids based on CsPbBr3 perovskite nanocrystals (NC) functionalized with borondipyrromethene (BODIPY) dyes, specifically 8-(4-carboxyphenyl)-1,3,5,7-tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BDP) and 8-(4-carboxyphenyl)-2,6-diiodo-1,3,5,7-tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (I2-BDP), named as NC@BDP and NC@I2-BDP, respectively. The ability of I2-BDP dyes to extract hot hole carriers from the perovskite nanocrystals is comprehensively investigated by combining steady-state and time-resolved fluorescence as well as femtosecond transient absorption spectroscopy with spectroelectrochemistry and quantum chemical theoretical calculations, which together provide a complete overview of the phenomena that take place in the nanohybrid. Förster resonance energy transfer (FRET) dominates (82%) the photosensitization of the singlet excited state of BDP in the NC@BDP nanohybrid with a rate constant of 3.8 ± 0.2 × 1010 s-1, while charge transfer (64%) mediated by an ultrafast charge transfer rate constant of 1.00 ± 0.08 × 1012 s-1 from hot states and hole transfer from the band edge is found to be mainly responsible for the photosensitization of the triplet excited state of I2-BDP in the NC@I2-BDP nanohybrid. These findings suggest that the NC@I2-BDP nanohybrid is a unique energy transfer photocatalyst for oxidizing α-terpinene to ascaridole through singlet oxygen formation.

2.
Phys Chem Chem Phys ; 26(9): 7416-7423, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38351859

RESUMO

The introduction of an oxime group into indirubin (INR) derivatives, including INROx, MINROx, and 6-BrINROx, and its impact on the spectral and photophysical properties of INR was investigated using a combination of fast-transient absorption (fs-TA/fs-UC) and steady-state fluorescence techniques. The oxime group introduces structural modifications that promote a rapid keto-enol tautomeric equilibrium and enhance the excited-state proton transfer (ESPT) process compared to its analogue, INR. In the oxime-indirubin derivatives investigated, the ESPT process is notably more efficient than what is observed in INR and indigo, occurring extremely fast (<1 ps) in all solvents, except for the viscous solvent glycerol. The more rapid deactivation mechanism precludes the formation of an intermediate species (syn-rotamer), as observed with INR. These findings are corroborated by time-dependent density functional theory (TDDFT) calculations. The work demonstrates that introducing an oxime group to INR, whether in nature or in the laboratory, results in an enhancement of its photostability.

3.
Photodiagnosis Photodyn Ther ; 45: 103964, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218570

RESUMO

BACKGROUND: The induction of phototoxicity during photodynamic therapy (PDT) is dependent on oxygen availability. For this reason, the development of sensors to measure oxygen and oxygen consumption is extremely important. APPROACH: In this project we have used Fluorescence Lifetime imaging (FLIM) and Phosphorescence Lifetime Imaging/ delayed Fluorescence Lifetime Imaging (PLIM/dFLIM) to investigate the ability of bromine indirubin derivatives as oxygen sensors. RESULTS: The oxygen sensitivity of bromine indirubins was detected through PLIM/dFLIM. Moreover, we have observed, by measuring nicotinamide adenine dinucleotide (NADH) FLIM, that bromine indirubin has a significant impact on cellular metabolism by shifting the SCC-4 Cells metabolism from oxidative phosphorylation (OXPHOS) to glycolysis. CONCLUSIONS: In conclusion, this study successfully achieves its goals and provides important insights into the use of indirubin as a potential oxygen consumption sensor with the capability to identify and differentiate between normoxic and hypoxic regions within the cells.


Assuntos
Oxigênio , Fotoquimioterapia , Humanos , Bromo , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Hipóxia , Indóis
4.
Nanomaterials (Basel) ; 14(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38202577

RESUMO

This paper presents a comprehensive investigation of the synthesis and characterization of Zn1-xCoxO (0 ≤ x ≤ 0.05) nanopowders using a chemical co-precipitation approach. The structural, morphological, and vibrational properties of the resulting ZnO nanostructures were assessed through X-ray diffraction, scanning electronic microscopy, and Raman spectroscopy to examine the influence of cobalt doping. Remarkably, a notable congruence between the experimental results and the density functional theory (DFT) calculations for the Co-doped ZnO system was achieved. Structural analysis revealed well-crystallized hexagonal wurtzite structures across all samples. The SEM images demonstrated the formation of spherical nanoparticles in all the samples. The vibrational properties confirmed the formation of a hexagonal wurtzite structure, with an additional Raman peak corresponding to the F2g vibrational mode characteristic of the secondary phase of ZnCo2O4 observed at a 5% cobalt doping concentration. Furthermore, a theoretical examination of cobalt doping's impact on the elastic properties of ZnO demonstrated enhanced mechanical behavior, which improves stability, recyclability, and photocatalytic activity. The photocatalytic study of the synthesized compositions for methylene blue (MB) dye degradation over 100 min of UV light irradiation demonstrated that Co doping significantly improves photocatalytic degradation. The material's prolonged lifetime, reduced rate of photogenerated charge carrier recombination, and increased surface area were identified as pivotal factors accelerating the degradation process. Notably, the photocatalyst with a Zn0.99Co0.01O composition exhibited exceptional efficiency compared to that reported in the literature. It demonstrated high removal activity, achieving an efficiency of about 97% in a shorter degradation time. This study underscores the structural and photocatalytic advancements in the ZnO system, particularly at lower cobalt doping concentrations (1%). The developed photocatalyst exhibits promise for environmental applications owing to its superior photocatalytic performance.

5.
ACS Appl Polym Mater ; 5(8): 6176-6185, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37588082

RESUMO

Chemical derivatives of polyethylenimine (PEI) receptors with either triphenylamine (TPA) or 7-hydroxy-4-methyl-coumarin (Cou) form stable complexes with adenine and guanine nucleotides in water. The host-guest complex modulation is found to be based on noncovalent molecular interactions such as π-π stacking and hydrogen bonding, which are dependent on the aromatic moieties attached to the polyaminic (PEI) backbone. PEI-TPA acts as a chemosensor with a recognition driving force based on aggregation-induced emission (AIE), involving π-π interaction between the nucleic base and TPA. It detects GTP by a chelation enhancement quenching effect of fluorescence (CHEQ) with a measured logarithm stability constant, log ß = 7.7. By varying the chemical characteristics of the fluorophore, as in the PEI-Cou system, the driving force for recognition changes from a π-π interaction to an electrostatic interaction. The coumarin derivative detects ATP with a log ß value one order of magnitude higher than that for GTP, allowing for the selective recognition of the two nucleotides in a 100% aqueous solution. Furthermore, fluorescence lifetime imaging microscopy (FLIM) allows for a correlation between the selectivity of PEI-TPA toward nucleotides and the morphology of the structures formed upon ATP and GTP recognition. This study offers valuable insights into the design of receptors for the selective recognition of nucleotides in water.

6.
Langmuir ; 39(16): 5727-5737, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37043283

RESUMO

A morphological analysis of different thin films of meso-tetra-p-(di-p-phenylamino)phenylporphyrin, H2T(TPA)4P, was made by fluorescence lifetime imaging microscopy (FLIM) and scanning electron microscopy (SEM). A comprehensive study of H2T(TPA)4P was undertaken through UV/vis absorption and fluorescence techniques in different solvents, solvent mixtures and in thin films. In solution, occurrence of intramolecular energy transfer from the triphenylamine (TPA) moieties to the porphyrin core, with quenching efficiencies in the order of 94-97%, is observed. The energy transfer rate constants are determined assuming Förster's dipole-dipole and Dexter's electron exchange mechanisms. In drop-cast-prepared thin films, from samples with different solvent mixtures, the photoluminescence (PL) quantum yield (ΦPL) decreases ∼1 order of magnitude compared to the solution behavior. FLIM and SEM experiments showed the self-organization and morphology of H2T(TPA)4P in thin films to be highly dependent on the solvent mixture used to prepare the film. In chloroform, the solvent's evaporation results in the formation of elongated and overlapped microrod structures. Introduction of a cosolvent, namely, a polar cosolvent, promotes changes in the morphology of the self-assembled structures, with the formation of three-dimensional spherical structures and hollow spheres. H2T(TPA)4P dispersed in a polymer matrix shows enhanced ΦPL values when compared to the drop-cast films. FLIM images showed coexistence of three different states or domains: aggregated, interface, and nonaggregated or less-aggregated states. This work highlights the importance of FLIM in the morphological characterization of heterogeneous films, together with the photophysical characterization of nano- and microdomains.

7.
Phys Chem Chem Phys ; 25(15): 10263-10277, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36919842

RESUMO

A comprehensive study on the electronic spectral, photophysical and acid-base properties of phenyl- and methyl-oxime corrole derivatives and of triphenylcorrole (model corrole) has been performed, aiming to shed light on the existing species in the ground and excited states. Solvents and corrole concentration are found to govern the properties of the studied compounds and are determinants of their applicability in in vivo studies. In THF, the neutral corrole has two tautomeric forms (T1 and T2). In DMSO, the deprotonated form shows a characteristic long-wavelength Q band slightly shifted to blue when compared with the T1 tautomer and a higher fluorescence quantum yield. In ACN, with the increase of the corrole concentration formation of an aggregate due to homoconjugation (with dimer characteristics) is observed, and pioneeringly reported using UV-Vis and fluorescence studies and confirmed by carrying out titrations with TFA. The effect of the oxime group on the pK values of a corrole is found to influence the formation of a homoconjugate, namely by precluding its formation (at higher concentrations) when compared with the model corrole. TDDFT electronic quantum calculations support the experimental observations, namely the existence of tautomers and deprotonated species, with their respective electronic spectral features, further allowed proposing a structure for the homoconjugate complex in ACN. The characteristics of the oxime-corroles, namely a pK of ∼ 5, absorption and emission at ca. 650 nm and solvent dependent properties, make them good candidates for their use in biological systems either as probes, sensors, or as new sensitizers for photodynamic therapy.

8.
Front Chem ; 10: 1004586, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36300029

RESUMO

A ketodiacid, 4,4'-dicarboxylate-dicumyl ketone (3), has been intercalated into a Zn, Al layered double hydroxide (LDH) by a coprecipitation synthesis strategy. The structure and chemical composition of the resultant hybrid material (LDH-KDA3) were characterized by powder X-ray diffraction (PXRD), FT-IR, FT-Raman and solid-state 13C{1H} NMR spectroscopies, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), and elemental analysis (CHN). PXRD showed that the dicarboxylate guest molecules assembled into a monolayer to give a basal spacing of 18.0 Å. TGA revealed that the organic guest starts to decompose at a significantly higher temperature (ca. 330°C) than that determined for the free ketodiacid (ca. 230°C). Photochemical experiments were performed to probe the photoreactivity of the ketoacid in the crystalline state, in solution, and as a guest embedded within the photochemically-inert LDH host. Irradiation of the bulk crystalline ketoacid results in photodecarbonylation and the exclusive formation of the radical-radical combination product. Solution studies employing the standard myoglobin (Mb) assay for quantification of released CO showed that the ketoacid behaved as a photoactivatable CO-releasing molecule for transfer of CO to heme proteins, although the photoreactivity was low. No photoinduced release of CO was found for the LDH system, indicating that molecular confinement enhanced the photo-stability of the hexasubstituted ketone. To better understand the behavior of 3 under irradiation, a more comprehensive study, involving excitation of this compound in DMSO-d6 followed by 1H NMR, UV-Vis and fluorescence spectroscopy, was undertaken and further rationalized with the help of time-dependent density functional theory (TDDFT) electronic quantum calculations. The photophysical study showed the formation of a less emissive compound (or compounds). New signals in the 1H NMR spectra were attributed to photoproducts obtained via Norrish type I α-cleavage decarbonylation and Norrish type II (followed by CH3 migration) pathways. TDDFT calculations predicted that the formation of a keto-enol system (via a CH3 migration step in the type II pathway) was highly favorable and consistent with the observed spectral data.

9.
Phys Chem Chem Phys ; 24(34): 20348-20356, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35980224

RESUMO

Shikonin, a naphthoquinone dye, is a molecule of colour of natural origin, whose peculiar properties have not yet been fully rationalized. Its core structure consists of a di-hydroxy-naphthoquinone with an additional non-aromatic hydroxy group. From a comprehensive study involving fast spectroscopic techniques (fs-TA and fs-UC) and TDDFT electronic structure calculations on shikonin (Shk) and its derivatives 5-hydroxy-1,4-naphthoquinone (5HNQ), 5,8-diacetoxy-1,4-naphthoquinone (DiAc), 5,8-dihidroxy-1,4-naphthoquinone (DHNQ) and acetylshikonin, AcShk, it is shown that intramolecular excited state proton transfer (ESIPT) is present and is determinant in the deactivation of the hydroxy containing molecules. This is mirrored by the dominance of the internal conversion deactivation channel. In Shk, the non-aromatic hydroxy group determines the preferred conformer in both the ground- and excited-state, as reflected in the doubling of the fluorescence quantum yield value of this molecule relative to DHNQ. From fs-UC, a kinetic isotopic effect of 1.7 was obtained for DHNQ.


Assuntos
Naftoquinonas , Teoria Quântica , Modelos Moleculares , Prótons
10.
Front Chem ; 10: 873245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572112

RESUMO

Novel 4,5,6,7-tetrahydropyrazolo[1,5-a]pyridine-fused meso-tetraarylchlorins, with different degrees of hydrophilicity (with methyl ester, hydroxymethyl, and carboxylic acid moieties), have been synthesized and their photophysical characterization as well as in vitro photocytotoxicity assessment against human melanoma and esophageal and bladder carcinomas was carried out. An integrated analysis of the photosensitizers' performance, considering the singlet oxygen generation data, cell internalization, and intracellular localization, allowed to establish relevant structure-photoactivity relationships and the rationalization of the observed photocytotoxicity. In the diacid and monoalcohol series, chlorins derived from meso-tetraphenylporphyrin proved to be the most efficient photodynamic therapy agents, showing IC50 values of 68 and 344 nM against A375 cells, respectively. These compounds were less active against OE19 and HT1376 cells, the diacid chlorin with IC50 values still in the nano-molar range, whereas the monohydroxymethyl-chlorin showed significantly higher IC50 values. The lead di(hydroxymethyl)-substituted meso-tetraphenylchlorin confirmed its remarkable photoactivity with IC50 values below 75 nM against the studied cancer cell lines. Subcellular accumulation of this chlorin in the mitochondria, endoplasmic reticulum, and plasma membrane was demonstrated.

11.
Inorg Chem ; 61(18): 6964-6976, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35475605

RESUMO

Aggregation-induced emission (AIE) has gained a remarkable amount of interest in the past 20 years, but the majority of the studies are based on organic structures. Herein, three dinuclear gold(I) complexes, with the general formula [PPh2XPPh2-Au2-Coum2], where the Au(I) atom is linked to three different diphosphanes [PPh2XPPh2; DPPM for X = CH2 (1.1), DPPP for X = (CH2)3 (1.2), and DPPA for X = C≡C (1.3)] and the propynyloxycoumarin precursor (1, 4-methyl-substituted coumarin), have been synthesized. The compounds present AIE characteristics, AIEgens, with high luminescence quantum yields in the solid state when they are compared to dilute solutions. Photophysical studies (steady-state and time-resolved fluorescence) were obtained, with AIE being observed with the three gold(I) complexes in acetonitrile/water mixtures. This was further corroborated with dynamic light scattering measurements. Time-dependent density functional theory (TDDFT) electronic calculations show that the compounds have different syn and anti conformations (relative to the coumarin core) with 1.1 syn and 1.2 and 1.3 both anti. From time-resolved fluorescence experiments, the augment in the contribution of the longer decay component is found to be associated with the emission of the aggregate (AIE effect) and its nature (involving a dimer) rationalized from TDDFT electronic calculations.

12.
Phys Chem Chem Phys ; 24(4): 2403-2411, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35019912

RESUMO

Three ligands bearing triphenylamine as a core and one, two or three acyclic polyamine chains, TPA1p, TPA2p and TPA3p, respectively, have been studied by potentiometric and photophysical (UV-Vis, steady-state and time-resolved fluorescence) techniques. The host-guest interaction with cucurbit[7]uril, CB7, has been investigated in aqueous solution showing aggregation induced emission behaviour when encapsulated into a CB7 cavity. From fluorescence emission it is revealed that the charged polyamine chains are the unit entering into CB7 and from the Job plots the stoichiometries are found to vary from 1 : 1 to 1 : 3 L : CB7 ratios. Interactions of the charged amines with the portals of CB7 restrict rotation of the benzene units in the triphenylamine backbone (free rotor effect), decreasing the radiationless internal conversion channel at the expense of the enhancement of fluorescence. Dynamic light scattering and resonance Rayleigh scattering experiments show that TPA3p-CB7 complexes involve formation of aggregates with a mean size of 126 ± 5 nm and a dispersity factor of 0.117, indicating a monodisperse distribution and supporting the important conclusions of this work: formation of emissive aggregates through the AIE effect.

13.
Photochem Photobiol Sci ; 21(5): 645-658, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34735707

RESUMO

Halogenated tryptanthrin and aminotryptanthrin were synthesized from indigo or isatin precursors. Dibromo- and tetrabromo-tryptanthrin were obtained from indigo dyes following green chemistry procedures, through microwave-assisted synthesis in mild oxidation conditions. Spectral and photophysical properties of the compounds, including quantitative determination of all the different deactivation pathways of S1 and T1, were obtained in different solvents and temperatures. The triplet state (T1) has a dominant role on the photophysical properties of these compounds, which is further enhanced by the halogens at the fused-phenyl rings. Substitution with an amino group, 2-aminotryptanthrin (TRYP-NH2), leads a dominance of the radiative decay channel. Moreover, with the sole exception of TRYP-NH2, S1 ~ ~ > T1 intersystem crossing constitutes the dominant route, with internal conversion playing a minor role in the deactivation of S1 in all the studied derivatives. In agreement with tryptanthrin, emission of the triplet state of tryptanthrin derivatives (with exception of TRYP-NH2), was observed together with an enhancement of the singlet oxygen sensitization quantum yield: from 70% in tryptanthrin to 92% in the iodine derivative. This strongly contrasts with indigo and its derivatives, where singlet oxygen sensitization is found inefficient.


Assuntos
Índigo Carmim , Oxigênio Singlete , Quinazolinas , Oxigênio Singlete/química , Solventes
14.
Chemistry ; 28(7): e202103768, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34882839

RESUMO

The search for a unique molecular system able to efficiently emit in the total visible range of the electromagnetic spectra, i. e., white light emission (WLE), is a topic of intense research. We here show that aggregates formed by diphenylbenzofulvene (DPBF) derivatives are from two to four orders of magnitude more emissive than their monomers. From a simple strategy, involving structural modification of a DPBF propelled shape core, a close match with the pure white light emission coordinates is obtained with a combination of two derivatives in films, with featured solid-state emission, without involvement of D-A groups or energy transfer processes.

15.
J Phys Chem B ; 125(42): 11751-11760, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34665627

RESUMO

Six gold(I) complexes (R3P-Au-Coum) containing three different alkynylcoumarin chromophores (Coum) with different electron-donating and electron-withdrawing characteristics and two different water-soluble phosphanes (PR3 = PTA (a) and DAPTA (b)) have been synthesized (1a,b, unsubstituted coumarin; 2a,b, 4-methyl substituted coumarin; 3a,b, 3-chloro and 4-methyl substituted coumarin). A comprehensive study of the photophysical properties of the R3P-Au-Coum, together with their propynyloxycoumarin precursors 1-3, was performed in solution at room and low temperatures. Spectral and photophysical characteristics of the R3P-Au-Coum essentially depend on the electronic characteristics of the propynyloxycoumarin ligand. The presence of the Au(I) atom was found to be responsible for an increase of the intersystem crossing, with triplet state quantum yield values, ϕT, ranging from ∼0.05 to 0.35 and high coumarin phosphorescence quantum yield values for derivatives 1 and 2; fluorescence dominates the deactivation in derivatives 3. Efficient singlet oxygen photosensitization was observed for the new compounds 3a,b. From TDDFT calculations, the relevant HOMO and LUMO of the compounds, i.e., those involved in the transitions, are dominated by the frontier orbitals associated with the coumarin core. The Au(I)-phosphane structure introduces a new transition assigned to an intraligand transition involving the phosphane ligand, and π(C≡C) system, to the p orbitals of phosphorus and gold atoms.


Assuntos
Elétrons , Ouro , Fluorescência , Ligantes , Oxigênio Singlete
16.
Macromol Rapid Commun ; 42(19): e2100370, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34254716

RESUMO

Polycationic stepladder polymers containing 5,12-diazapentacenium bistriflate repeat units are made in a two-step sequence of a carbon-nitrogen cross coupling polymerization and subsequent postpolymerization cyclization. The deeply colored products show a rather weak conjugative interaction between the dicationic diazapentacenium repeat units along the polymer chains.


Assuntos
Polímeros , Cátions , Ciclização , Polimerização
17.
RSC Med Chem ; 12(4): 615-627, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-34046633

RESUMO

Investigation of novel 4,5,6,7-tetrahydropyrazolo[1,5-a]pyridine-fused chlorins, derived from 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin, as PDT agents against melanoma and esophagus cancer is disclosed. Diol and diester fluorinated ring-fused chlorins, including derivatives with 2-(2-hydroxyethoxy)ethanamino groups at the phenyl rings, were obtained via a two-step methodology, combining SNAr and [8π + 2π] cycloaddition reactions. The short-chain PEG groups at the para-position of the phenyl rings together with the diol moiety at the fused pyrazole ring promote a red-shift of the Soret band, a decrease of the fluorescence quantum yield and an increase of the singlet oxygen formation quantum yield, improving the photophysical characteristics required to act as a photosensitizer. Introduction of these hydrophilic groups also improves the incorporation of the sensitizers by the cells reaching cellular uptake values of nearly 50% of the initial dose. The rational design led to a photosensitizer with impressive IC50 values, 13 and 27 nM against human melanoma and esophageal carcinoma cell lines, respectively.

18.
Chemistry ; 27(29): 7826-7830, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33836115

RESUMO

Enhancement of the luminescence efficiency of two new diazapentacenium salts (D1 and D2) of more than 55 for D1 and 22 times for D2) in poor solvents, acetonitrile and/or dichloromethane, was observed and rationalized as formation of emissive J-aggregates. Both compounds displaying 4-n-decylphenyl substituents at the 7,14-carbons and phenyl (D1) or 2,6-difluorophenyl (D2) substituents at the quaternary nitrogen atoms in 5,12-positions have been synthetized in a two-step procedure involving a two-fold Buchwald-Hartwig-type CN cross-coupling and an electrophilic Friedel-Crafts-type cyclization. The optical properties of the dicationic diazapentacenium salts in various solvents and in thin films have been investigated by steady-state and time-resolved absorption and photoluminescence spectroscopies. In thin films and in good solvents, isolated molecules coexist with aggregates. Nonetheless, D1 is seven times more emissive than D2, reflecting a higher J-aggregate contribution in the former.

19.
Top Curr Chem (Cham) ; 379(3): 15, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33725207

RESUMO

The enhancement of photoluminescence through formation of molecular aggregates in organic oligomers and conjugated organic polymers is reviewed. A historical contextualization of aggregation-induced emission (AIE) phenomena is presented. This includes the loose bolt or free rotor effect and J-aggregation phenomena, and discusses their characteristic features, including structures and mechanisms. The basis of both effects is examined in key molecules, with a particular emphasis on the AIE effect occurring in conjugated organic polymers with a polythiophene (PT) skeleton with triphenylethylene (TPE) units. Rigidification of the excited state structure is one of the defining conditions required to obtain AIE, and thus, by changing from a flexible ground state to rigid (quinoidal-like) structures, oligo and PTs are among the most promising emerging molecules alongside with the more extensively used TPE derivatives. Molecular structures moving away from the domination of aggregation-caused quenching to AIE are presented. Future perspectives for the rational design of AIEgen structures are discussed.

20.
Dalton Trans ; 49(35): 12319-12326, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32841310

RESUMO

A new water-soluble tri-tert-butyl-bithiophenesulfonamide (α2-tbS) was synthesized and a comprehensive spectroscopic and photophysical study was undertaken in organic solvents and water at different pH values. In contrast to the behaviour found for the parent (and un-substituted) α,α'-bithiophene (α2), in which radiationless decay processes are the main excited-state deactivation channels, the tert-butylsulfonamide derivative presents a significant fluorescence quantum yield (φF) (ca. one order of magnitude higher than that of α2). The high φF allowed further exploring α2-tbS as a selective fluorimetric sensor for metal ions. A strong selectivity towards Cu(ii) is observed at neutral pH values, whereas at pH = 9.5 a strong quenching upon the addition of Hg(ii) is observed. An additional high sensitivity of 0.64 ± 0.02 ppm towards Cu(ii) was observed, well below 1.25 ppm (∼20 µM), the maximum value allowed in drinking water by the EPA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...