Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38790304

RESUMO

The repair of critical-sized calvarial defects is a challenging problem for orthopedic surgery. One of the promising strategies of bone bioengineering to enhance the efficacy of large bone defect regeneration is the combined delivery of stem cells with osteoinductive factors within polymer carriers. The purpose of the research was to study the regenerative effects of heparin-conjugated fibrin (HCF) hydrogel containing bone morphogenetic protein 2 (BMP-2) and adipose-derived pericytes (ADPs) in a rat critical-sized calvarial defect model. In vitro analysis revealed that the HCF hydrogel was able to control the BMP-2 release and induce alkaline phosphatase (ALP) activity in neonatal rat osteoblasts. In addition, it was found that eluted BMP-2 significantly induced the osteogenic differentiation of ADPs. It was characterized by the increased ALP activity, osteocalcin expression and calcium deposits in ADPs. In vivo studies have shown that both HCF hydrogel with BMP-2 and HCF hydrogel with pericytes are able to significantly increase the regeneration of critical-sized calvarial defects in comparison with the control group. Nevertheless, the greatest regenerative effect was found after the co-delivery of ADPs and BMP-2 into a critical-sized calvarial defect. Thus, our findings suggest that the combined delivery of ADPs and BMP-2 in HCF hydrogel holds promise to be applied as an alternative biopolymer for the critical-sized bone defect restoration.

2.
Cells ; 12(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37759485

RESUMO

Atherosclerosis (AS) is an inflammatory disease involving multiple factors in its initiation and development. In recent years, the potential application of mesenchymal stem cells (MSCs) for treating AS has been investigated. This study examined the effect of TNF-α preconditioning on MSCs' therapeutic efficacy in treating AS in ApoE KO mice. TNF-α-treated MSCs were administered to high-fat diet-treated ApoE KO mice. Cytokine and serum lipid levels were measured before and after treatment. Cryosections of the atherosclerotic aorta were stained with Oil-Red-O, and the relative areas of atherosclerotic lesions were measured. The level of Tregs were increased in TNF-α-MSC-treated animals compared to the MSCs group. In addition, the systemic administration of TNF-α-MSCs to ApoE KO mice reduced the level of proinflammatory cytokines such as TNF-α and IFN-γ and increased the level of the immunosuppressive IL-10 in the blood serum. Total cholesterol and LDL levels were decreased, and HDL levels were increased in the TNF-α-MSCs group of ApoE KO mice. A histological analysis showed that TNF-α-MSCs decreased the size of the atherosclerotic lesion in the aorta of ApoE KO mice by 38%, although there was no significant difference when compared with untreated MSCs. Thus, our data demonstrate that TNF-α-MSCs are more effective at treating AS than untreated MSCs.

3.
Biomedicines ; 12(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275382

RESUMO

Pericytes, as perivascular cells, are present in all vascularized organs and tissues, and they actively interact with endothelial cells in capillaries and microvessels. Their involvement includes functions like blood pressure regulation, tissue regeneration, and scarring. Studies have confirmed that pericytes play a crucial role in bone tissue regeneration through direct osteodifferentiation processes, paracrine actions, and vascularization. Recent preclinical and clinical experiments have shown that combining perivascular cells with osteogenic factors and tissue-engineered scaffolds can be therapeutically effective in restoring bone defects. This approach holds promise for addressing bone-related medical conditions. In this review, we have emphasized the characteristics of pericytes and their involvement in angiogenesis and osteogenesis. Furthermore, we have explored recent advancements in the use of pericytes in preclinical and clinical investigations, indicating their potential as a therapeutic resource in clinical applications.

4.
Life (Basel) ; 13(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36676054

RESUMO

In vivo biotinylation using wild-type and mutants of biotin ligases is now widely applied for the study of cellular proteomes. The commercial availability of kits for the highly efficient purification of biotinylated proteins and their excellent compatibility with LC-MS/MS protocols are the main reasons for the choice of biotin ligases. Since they are all enzymes, however, just a very low expression in cells is required for experiments. Therefore, it can be difficult to perform the quantifications of these enzymes in various samples. Traditional methods, such as western blotting, are not always fit for the detection of the expression levels. Therefore, real-time qRT-PCR, a technology that is more sensitive, was used in this study to quantify the expression of BirA fusions. Using this method, we detected high expression levels of BirA fusions in models of interactions of pluripotency transcription factors to carry out their relative quantification. We also found the absence of the competing endogenous proteins SOX2 and OCT4, as well as no cross-reactivity between BAP/BirA and the endogenous biotinylation system in HEK293T cells. Thus, these data indicated that the high level of biotinylation is due to the in vivo interaction of BAP-X and BirA-Y (X,Y = SOX2, OCT4) in the cell rather than their random collision, a big difference in the expression level of BirA fusions across samples or endogenous biotinylation.

5.
Curr Stem Cell Res Ther ; 16(7): 897-913, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33511957

RESUMO

Atherosclerosis is a multifactorial and complex disease involving the arterial intima of the circulatory system. The main risk factors of atherosclerosis are diabetes mellitus, hypertension, hyperlipidemic states, smoking, mental stress, unhealthy diet, and a lack of physical activity. Recent studies have shown that dyslipidemia, inflammation and immune cells are involved in all stages of the development of atherosclerosis. Mesenchymal stem cells are a heterogeneous subset of multipotent cells that can be isolated from nearly all human organs and tissues, and they possess both regenerative and immunomodulatory properties. Recent studies have shown that mesenchymal stem cells are able to provide immunosuppressive, regenerative, and atheroprotective effects by reducing dyslipidemia, inflammation and inhibiting endothelial cell dysfunction and plaque formation during the development of atherosclerosis in animal models. Based on these beneficial effects, mesenchymal stem cells are considered a promising alternative therapeutic approach for the effective treatment of atherosclerosis. In this review, we summarize the current findings on potential applications of mesenchymal stem cells for preventing and regressing atherosclerosis as well as discuss strategies for improving the efficacy of mesenchymal stem cell-based therapy.


Assuntos
Aterosclerose , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Aterosclerose/terapia , Células Endoteliais , Humanos , Imunomodulação , Inflamação/terapia
6.
Cell Transplant ; 29: 963689720956956, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32885682

RESUMO

Pericytes possess high multipotent features and cell plasticity, and produce angiogenic and neurotrophic factors that indicate their high regenerative potential. The aim of this study was to investigate whether transplantation of adipose-derived pericytes can improve functional recovery and neurovascular plasticity after ischemic stroke in rats. Rat adipose-derived pericytes were isolated from subcutaneous adipose tissue by fluorescence-activated cell sorting. Adult male Wistar rats were subjected to 90 min of middle cerebral artery occlusion followed by intravenous injection of rat adipose-derived pericytes 24 h later. Functional recovery evaluations were performed at 1, 7, 14, and 28 days after injection of rat adipose-derived pericytes. Angiogenesis and neurogenesis were examined in rat brains using immunohistochemistry. It was observed that intravenous injection of adipose-derived pericytes significantly improved recovery of neurological function in rats with stroke compared to phosphate-buffered saline-treated controls. Immunohistochemical analysis revealed that the number of blood capillaries was significantly increased along the ischemic boundary zone of the cortex and striatum in stroke rats treated with adipose-derived pericytes. In addition, treatment with adipose-derived pericytes increased the number of doublecortin positive neuroblasts. Our data suggest that transplantation of adipose-derived pericytes can significantly improve the neurologic status and contribute to neurovascular remodeling in rats after ischemic stroke. These data provide a new insight for future cell therapies that aim to treat ischemic stroke patients.


Assuntos
Tecido Adiposo/citologia , AVC Isquêmico/fisiopatologia , AVC Isquêmico/terapia , Pericitos/transplante , Animais , Linhagem da Célula , Forma Celular , Células Clonais , Proteína Duplacortina , Infarto da Artéria Cerebral Média/patologia , AVC Isquêmico/patologia , Masculino , Neovascularização Fisiológica , Neurogênese , Ratos Wistar
7.
Cent Asian J Glob Health ; 2(Suppl): 98, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-29805857

RESUMO

INTRODUCTION: Cell-based immunotherapy has been given increased attention as a treatment for cancer. Human natural killer (NK) cells are resident lymphocyte populations. They exhibit potent antitumor activity without human leukocyte antigen matching and without prior antigen exposure. They also are a promising tool for immunotherapy of solid and hematologic cancers. However, most cancer patients do not have enough NK cells to induce an effective antitumor immune response. This demonstrates a need for a source of NK cells that can supplement the endogenous cell population. MATERIAL AND METHODS: In this study, we derived induced pluripotent stem cells (iPSCs) from peripheral blood T-lymphocytes using Sendai virus vectors. RESULTS: Generated iPSCs exhibited monoclonal T cell receptors (TCR) rearrangement in their genome, a hallmark of mature terminally differentiated T cells. These iPSCs were differentiated into NK cells using a two-stage coculture system: iPSCs into hematopoietic CD34+ cells with feeder cells M210-B4 (ATCC, USA) and CD34+ cells into mature NK cells with AFT024 cells (ATCC, USA). Our results showed that iPSC-derived NK cells expressed CD56, CD16, NKp 44 and NKp 46, possessed high cytotoxic activity and produced high level of interferon-γ. CONCLUSION: Based on our data, derivation of NK cells from induced pluripotent stem cells should be considered in the treatment of oncologic diseases. This would allow for the development of cell therapy for cancer using immunologically compatible NK cells derived from iPSCs. This may contribute to a more efficient treatment of oncologic diseases in addition to traditional cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...