Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(10): 16292-16313, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-35916497

RESUMO

Severe hemorrhage associated with trauma, surgery, and congenital or drug-induced coagulopathies can be life-threatening and requires rapid hemostatic management via topical, intracavitary, or intravenous routes. For injuries that are not easily accessible externally, intravenous hemostatic approaches are needed. The clinical gold standard for this is transfusion of blood products, but due to donor dependence, specialized storage requirements, high risk of contamination, and short shelf life, blood product use faces significant challenges. Consequently, recent research efforts are being focused on designing biosynthetic intravenous hemostats, using intravenous nanoparticles and polymer systems. Here we report on the design and evaluation of thrombin-loaded injury-site-targeted lipid nanoparticles (t-TLNPs) that can specifically localize at an injury site via platelet-mimetic anchorage to the von Willebrand factor (vWF) and collagen and directly release thrombin via diffusion and phospholipase-triggered particle destabilization, which can locally augment fibrin generation from fibrinogen for hemostatic action. We evaluated t-TLNPs in vitro in human blood and plasma, where hemostatic defects were created by platelet depletion and anticoagulation. Spectrophotometric studies of fibrin generation, rotational thromboelastometry (ROTEM)-based studies of clot viscoelasticity, and BioFlux-based real-time imaging of fibrin generation under simulated vascular flow conditions confirmed that t-TLNPs can restore fibrin in hemostatic dysfunction settings. Finally, the in vivo feasibility of t-TLNPs was tested by prophylactic administration in a tail-clip model and emergency administration in a liver-laceration model in mice with induced hemostatic defects. Treatment with t-TLNPs was able to significantly reduce bleeding in both models. Our studies demonstrate an intravenous nanomedicine approach for injury-site-targeted direct delivery of thrombin to augment hemostasis.


Assuntos
Hemostáticos , Trombina , Humanos , Camundongos , Animais , Fator de von Willebrand , Nanomedicina , Hemostasia , Plaquetas , Fibrina , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Fibrinogênio , Polímeros , Anticoagulantes
2.
Sci Transl Med ; 14(629): eabb8975, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35080915

RESUMO

Treatment of bleeding disorders using transfusion of donor-derived platelets faces logistical challenges due to their limited availability, high risk of contamination, and short (5 to 7 days) shelf life. These challenges could be potentially addressed by designing platelet mimetics that emulate the adhesion, aggregation, and procoagulant functions of platelets. To this end, we created liposome-based platelet-mimicking procoagulant nanoparticles (PPNs) that can expose the phospholipid phosphatidylserine on their surface in response to plasmin. First, we tested PPNs in vitro using human plasma and demonstrated plasmin-triggered exposure of phosphatidylserine and the resultant assembly of coagulation factors on the PPN surface. We also showed that this phosphatidylserine exposed on the PPN surface could restore and enhance thrombin generation and fibrin formation in human plasma depleted of platelets. In human plasma and whole blood in vitro, PPNs improved fibrin stability and clot robustness in a fibrinolytic environment. We then tested PPNs in vivo in a mouse model of thrombocytopenia where treatment with PPNs reduced blood loss in a manner comparable to treatment with syngeneic platelets. Furthermore, in rat and mouse models of traumatic hemorrhage, treatment with PPNs substantially reduced bleeding and improved survival. No sign of systemic or off-target thrombotic risks was observed in the animal studies. These findings demonstrate the potential of PPNs as a platelet surrogate that should be further investigated for the management of bleeding.


Assuntos
Plaquetas , Nanopartículas , Animais , Hemorragia , Hemostasia/fisiologia , Camundongos , Modelos Animais , Ratos
3.
ACS Biomater Sci Eng ; 4(4): 1176-1192, 2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33418655

RESUMO

Wound healing is a complex biological process involving distinct phases of hemostasis, immune response, and inflammatory events, regulated cellular proliferation, and matrix remodeling. While immune and inflammatory cellular phenotypes (e.g., neutrophils and monocyte/macrophages) are often the focus of wound healing studies, the initial hemostatic and sustained secretory role of platelets to modulate the various mechanistic phases of wound healing via clot promotion, clot stabilization and retraction, release of various growth factors and cytokines from active platelet granules, and release of matrix remodeling enzymes is becoming exceedingly appreciated in preclinical and clinical settings. This has led to extensive studies using platelet-based products like platelet-rich-plasma (PRP) suspensions and gels as topical and injectable technologies to augment wound healing in both soft and hard tissues. In parallel, a robust volume of research is currently being directed at mimicking and leveraging the hemostatic and secretory mechanisms of platelets utilizing various lipidic and polymeric biomaterials systems. The current article is aimed at providing a review of platelet involvement in wound healing mechanisms and subsequently discussing the current state-of-the-art regarding various platelet-based as well as biomaterials-based approaches and technologies to promote wound healing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...