Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 34(17): 4970-4979, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29631397

RESUMO

Aqueous dispersions of micrometer-sized, monodisperse polystyrene (PS) particles carrying pH-responsive poly[2-(diethylamino)ethyl methacrylate] (PDEA) colloidal stabilizer on their surfaces were dried under ambient conditions at pH 3.0 and 10.0. The resulting dried cake-like particulate materials were ground into powders and used as a stabilizer to fabricate liquid marbles (LMs) by rolling and electrostatic methods. The powder obtained from pH 3.0 aqueous dispersion consisted of polydisperse irregular-shaped colloidal crystal grains of densely packed colloids which had hydrophilic character. On the other hand, the powder obtained from pH 10.0 aqueous dispersion consisted of amorphous and disordered colloidal aggregate grains with random sizes and shapes, which had hydrophobic character. Reflecting the hydrophilic-hydrophobic balance of the dried PDEA-PS particle powders, stable LMs were fabricated with distilled water droplets by rolling on the powders prepared from pH 10.0, but the water droplets were adsorbed into the powders prepared from pH 3.0. In the electrostatic method, where an electric field assists transport of powders to a droplet surface, the PDEA-PS powders prepared from pH 3.0 jumped to an earthed pendant distilled water droplet to form a droplet of aqueous dispersion. Conversely the larger powder aggregates prepared from pH 10.0 did not jump due to cohesion between the hydrophobic PDEA chains on the PS particles, resulting in no LM formation.

2.
Langmuir ; 33(8): 1995-2002, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28177245

RESUMO

Supraballs of various sizes and compositions can be fabricated via drying of drops of aqueous colloidal dispersions on super-liquid-repellent surfaces with no chemical waste and energy consumption. A "supraball" is a particle composed of colloids. Many properties, such as mechanical strength and porosity, are determined by the ordering of a colloidal assembly. To tune such properties, a colloidal assembly needs to be controlled when supraballs are formed during drying. Here, we introduce a method to control a colloidal assembly of supraballs by adjusting the dispersity of the colloids. Supraballs are fabricated on superamphiphobic surfaces from colloidal aqueous dispersions of polystyrene microparticles carrying pH-responsive poly[2-(diethylamino)ethyl methacrylate]. Drying of dispersion drops at pH 3 on superamphiphobic surfaces leads to the formation of spherical supraballs with densely packed colloids. The pH 10 supraballs are more oblate and consist of more disordered colloids than the pH 3 supraballs, caused by particle aggregates with random sizes and shapes in the pH 10 dispersion. Thus, the shape, crystallinity, porosity, and mechanical properties could be controlled by pH, which allows broader uses of supraballs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...