Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 24(21): e202300029, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37547980

RESUMO

High-density assemblies or superlattice structures composed of colloidal semiconductor nanocrystals have attracted attention as key materials for next-generation photoelectric conversion devices such as quantum-dot solar cells. In these nanocrystal solids, unique transport and optical phenomena occur due to quantum coupling of localized energy states, charge-carrier hopping, and electromagnetic interactions among closely arranged nanocrystals. In particular, the photoexcited carrier dynamics in nanocrystal solids is important because it significantly affects various device parameters. In this study, we report the photoexcited carrier dynamics in a solid film of CuInS2 nanocrystals, which is one of the potential nontoxic substitutes with Cd- and Pb-free compositions. Meanwhile, these subjects have been extensively studied in nanocrystal solids formed by CdSe and PbS systems. A carrier-hopping mechanism was confirmed using temperature-dependent photoluminescence spectroscopy, which yielded a typical value of the photoexcited carrier-transfer rate of (2.2±0.6)×107  s-1 by suppressing the influence of the excitation-energy transfer.

2.
Nanotechnology ; 34(11)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36595242

RESUMO

The crystallographic and transport properties of thin films fabricated by pulsed laser deposition and belonging to the Smy(FexNi1-x)4Sb12filled skutterudite system were studied with the aim to unveil the effect exerted by temperature and duration of thermal treatments on structural and thermoelectric features. The importance of annealing treatments in Ar atmosphere up to 523 K was recognized, and the thermal treatment performed at 473 K for 3 h was selected as the most effective in improving the material properties. With respect to the corresponding bulk compositions, a significant enhancement in phase purity, as well as an increase in electrical conductivity and a drop in room temperature thermal conductivity, were observed in annealed films. The low thermal conductivity, in particular, can be deemed as deriving from the reduced dimensionality and the consequent substrate/film interfacial stress, coupled with the nanometric grain size.

3.
ACS Omega ; 6(45): 30419-30431, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34805672

RESUMO

We have investigated the pressure (P) effect on structural (up to 10 GPa), transport [R(T): up to 10 GPa], and magnetic [(M(T): up to 1 GPa)] properties and analyzed the flux pinning mechanism of the Fe0.99Mn0.01Se0.5Te0.5 superconductor. The maximum superconducting transition temperature (T c) of 22 K with the P coefficient of T c dT c/dP = +2.6 K/GPa up to 3 GPa (dT c/dP = -3.6 K/GPa, 3 ≤ P ≥ 9 GPa) was evidenced from R(T) measurements. The high-pressure diffraction and density functional theory (DFT) calculations reveal structural phase transformation from tetragonal to hexagonal at 5.9 GPa, and a remarkable change in the unit cell volume is observed at ∼3 GPa where the T c starts to decrease, which may be due to the reduction of charge carriers, as evidenced by a reduction in the density of states (DOS) close to the Fermi level. At higher pressures of 7.7 GPa ≤ P ≥ 10.2 GPa, a mixed phase (tetragonal + hexagonal phase) is observed, and the T c completely vanishes at 9 GPa. A significant enhancement in the critical current density (J C) is observed due to the increase of pinning centers induced by external pressure. The field dependence of the critical current density under pressure shows a crossover from the δl pinning mechanism (at 0 GPa) to the δT c pinning mechanism (at 1.2 GPa). The field dependence of the pinning force at ambient condition and under pressure reveals the dense point pinning mechanism of Fe0.99Mn0.01Se0.5Te0.5. Moreover, both upper critical field (H C2) and J C are enhanced significantly by the application of an external P and change over to a high P phase (hexagonal ∼5.9 GPa) faster than a Fe0.99Ni0.01Se0.5Te0.5 (7.7 GPa) superconductor.

4.
Materials (Basel) ; 14(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34832325

RESUMO

The effect of SnO2 addition (0, 1, 2, 4 wt.%) on thermoelectric properties of c-axis oriented Al-doped ZnO thin films (AZO) fabricated by pulsed laser deposition on silica and Al2O3 substrates was investigated. The best thermoelectric performance was obtained on the AZO + 2% SnO2 thin film grown on silica, with a power factor (PF) of 211.8 µW/m·K2 at 573 K and a room-temperature (300 K) thermal conductivity of 8.56 W/m·K. PF was of the same order of magnitude as the value reported for typical AZO bulk material at the same measurement conditions (340 µW/m·K2) while thermal conductivity κ was reduced about four times.

5.
Materials (Basel) ; 14(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34640169

RESUMO

Filled skutterudites are currently studied as promising thermoelectric materials due to their high power factor and low thermal conductivity. The latter property, in particular, can be enhanced by adding scattering centers, such as the ones deriving from low dimensionality and the presence of interfaces. This work reports on the synthesis and characterization of thin films belonging to the Smy(FexNi1-x)4Sb12-filled skutterudite system. Films were deposited under vacuum conditions by the pulsed laser deposition (PLD) method on fused silica substrates, and the deposition temperature was varied. The effect of the annealing process was studied by subjecting a set of films to a thermal treatment for 1 h at 423 K. Electrical conductivity σ and Seebeck coefficient S were acquired by the four-probe method using a ZEM-3 apparatus performing cycles in the 348-523 K temperature range, recording both heating and cooling processes. Films deposited at room temperature required three cycles up to 523 K before being stabilized, thus revealing the importance of a proper annealing process in order to obtain reliable physical data. XRD analyses confirm the previous result, as only annealed films present a highly crystalline skutterudite not accompanied by extra phases. The power factor of annealed films is shown to be lower than in the corresponding bulk samples due to the lower Seebeck coefficients occurring in films. Room temperature thermal conductivity, on the contrary, shows values comparable to the ones of doubly doped bulk samples, thus highlighting the positive effect of interfaces on the introduction of scattering centers, and therefore on the reduction of thermal conductivity.

6.
Inorg Chem ; 41(20): 5133-40, 2002 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-12354047

RESUMO

The preparation of two new compounds containing the cluster [Ni(21)(cit)(12)(OH)(10)(H(2)O)(10)](16-) is presented, together with a detailed magnetic investigation of one of the compounds. We found that this cluster shows an unexpected stability and that it exists as different stereoisomers. Compound 1 contains the achiral cluster with a Delta-Lambda configuration, and compound 2 contains a pair of enantiomeric clusters with the configurations Delta-Delta and Lambda-Lambda, respectively. Magnetic measurements of 1 in the millikelvin range were necessary to determine the spin ground state of S = 3, and they also revealed a magnetic anisotropy within the ground state. A frequency-dependent out-of-phase signal was found in alternating current susceptibility measurements at very low temperatures, which indicates a slow relaxation of the magnetization. Thus, individual molecules are acting as single magnetic units, which is a rare phenomenon for nickel clusters. The energy barrier exhibited by compound 1 has been calculated to be 2.9 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...