Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39038202

RESUMO

Exploring methods for assembling functional materials at the molecular level may yield functional expressions derived from the assembly method. This study developed novel switchable molecular assemblies characterized by abrupt, complete phase transitions promoted via hydrogen bonding with a chiral carboxylic acid. These assemblies were prepared by aggregating discrete molecules that are unresponsive to external stimuli. Furthermore, enantiopure hydrogen-bond donor (HBD) molecules provide switchable compounds with cooperative and abrupt phase transitions, whereas the racemic mixture of the HBD provides a hydrogen-bonded one-dimensional compound with a broad and incomplete phase transition when structural disordering is observed. This study presents a novel strategy for observing metal-to-metal electron-transfer-coupled spin transitions via hydrogen-bond formation.

2.
Dalton Trans ; 53(13): 5861-5870, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38411596

RESUMO

Coexistence and switching between spin-crossover (SCO) and single molecular magnet (SMM) behaviours in one single complex may lead to materials that exhibit bi-stable and stimuli sensitive properties in a wide temperature range and under multiple conditions; unfortunately, the conflict and dilemma in the principle of approaching SCO and SMM molecules make it particularly difficult; at low temperature, low spin (LS) SCO molecules possess highly symmetrical geometry and isotropic spins, which are not suitable for SMM behaviour. Herein, we overcome this issue by using a rationally designed Co(II) mononuclear complex [Co(MeOphterpy)2] (ClO4)2 (1; MeOphterpy = 4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine), the magnetic properties of which reversibly respond to desolvation and solvation. The solvated structure reinforced a low distortion of the coordination sphere via hydrogen bonding between ligands and methanol molecules, while in the desolvated structure a methoxy group flipping occurred, increasing the distortion of the coordination sphere and stabilising the HS state at low temperature, which exhibited a field-induced slow magnetic relaxation, resulting in a reversible switching between SCO and SMM properties within one molecule.

4.
Chem Commun (Camb) ; 59(53): 8306-8309, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37325912

RESUMO

Herein, we report nanodiamond oxide (NDOx), obtained from modified Hummers' oxidation of nanodiamond (ND), showing excellent proton conductivity and thermal stability. NDOx possesses hydrophilicity resulting in higher water adsorption and the retention of functional groups at elevated temperatures can be attributed to the high proton conductivity and thermal stability, respectively.


Assuntos
Nanodiamantes , Prótons , Óxidos , Água
5.
Nanoscale Adv ; 5(9): 2413-2417, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37143819

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivation of pH-dependent graphene oxide (GO) nanosheets is presented. The observed virus inactivation using an authentic virus (Delta variant) and different GO dispersions at pH 3, 7, and 11 suggests that the higher pH of the GO dispersion yields a better performance compared to that of GO at neutral or lower pH. The current findings can be ascribed to the pH-driven functional group change and the overall charge of GO, favorable for the attachment between GO nanosheets and virus particles.

6.
Chempluschem ; 88(6): e202200463, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36859753

RESUMO

Significant research has been conducted on molecular ferroelectric materials, including pure organic and inorganic compounds; however, studies on ferroelectric materials based on coordination metal complexes are scarce. Ferroelectric materials based on coordination metal complexes have tunable structures and designs, with coexistence or synergy between the ferroelectric behavior and magnetic properties. Compared to inorganic compounds, few coordination metal complexes exhibit coupling between the magnetic and dielectric properties. Coordination metal complexes with strong coupling between the magnetic and dielectric properties exhibit dielectric permittivity variations under external magnetic fields. Therefore, they have attracted substantial interest for their potential use in magnetoelectric devices. In this review, we discuss recent advances in coordination metal complexes, that exhibit coupled magnetic functionalities and ferroelectricity or dielectric properties, including single-molecule magnets, electron delocalization systems, and external stimuli responsive compounds.

7.
Mod Rheumatol ; 33(2): 373-380, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35353896

RESUMO

OBJECTIVES: This study aimed to evaluate the changes in knee pain, a dominant cause of physical disability, following the coronavirus disease (COVID-19) pandemic, and to identify factors affecting the changes in knee pain. METHODS: We analysed the pre- and post-COVID-19 longitudinal data set of the Nagahama Study. Knee pain was assessed using the Knee Society Score (KSS). The estimated KSS from the age and sex using regression model in the pre- and post-COVID-19 data set was compared. Factors including the activity score, educational level, and various impacts of COVID-19 were analysed for correlation analyses with changes in KSS. RESULTS: Data collected from 6409 participants showed statistically significant differences in KSS, pre- (mean = 22.0; SD = 4.4) and post-COVID-19 (mean = 19.5; SD = 6.4). Low activity score (p = .008), low educational level (p < .001), and undesirable financial impact (p = .030) were independently associated with knee pain exacerbation. CONCLUSION: The harmful effects of the COVID-19 pandemic on knee pain were suggested. People should be encouraged to engage in physical activities, such as walking, despite the state of emergency. Furthermore, social support for economically disadvantaged groups may improve healthcare access, preventing the acute exacerbations of knee pain.


Assuntos
Artroplastia do Joelho , COVID-19 , Osteoartrite do Joelho , Humanos , Pandemias , Artroplastia do Joelho/efeitos adversos , Osteoartrite do Joelho/cirurgia , Estudos Longitudinais , COVID-19/epidemiologia , Dor/epidemiologia , Dor/etiologia
8.
Chem Asian J ; 17(14): e202200376, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35527229

RESUMO

Herein, we report an efficient proton exchange membrane formed from a synergistic combination of graphene oxide (GO) and oxidized single-walled carbon nanotube (CNTOX) by the freeze-drying route that gives rise to enhanced fuel cell power density. At 25 °C and 100% relative humidity (RH), the 3DGO-CNTOX hybrid shows remarkably high out-of-plane and in-plane proton conductivities of 6.64×10-2 and 5.08 S cm-1 , respectively. Additionally, the measured performance using prepared films as proton conduction membranes in a proton exchange membrane fuel cell (PEMFC) exhibited a peak power density of 117.21 mW cm-2 . The high performance of these films can be ascribed to the freeze-dried-driven structural morphology of 3DGO-CNTOX that facilitates higher water retention capacity as well as the synergistic strengthening effect between GO and CNTOX with a highly interconnected proton conduction network. The current results imply that the new 3DGO-CNTOX hybrid material has potential for wide application as a proton exchange membrane.


Assuntos
Grafite , Nanotubos de Carbono , Eletrólitos , Grafite/química , Nanotubos de Carbono/química , Prótons
9.
RSC Adv ; 12(14): 8632-8636, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35424816

RESUMO

Remarkably high mixed proton and electron conduction arising from oxidized single-wall carbon nanotubes at room temperature is demonstrated. The respective proton and electronic conductivities are 1.40 and 8.0 × 10-2 S cm-1 in the in-plane direction, and 3.1 × 10-2 and 1.1 × 10-3 S cm-1 in the out-of-plane direction, indicating their potential in a wide range of solid electrolyte membranes.

10.
Chem Commun (Camb) ; 58(35): 5411-5414, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35416213

RESUMO

A long alkyl-chained organic molecule, 4,5,6,7-tetrachloro-2-dodecylisoindoline-1,3-dione (1), was crystallized into needle-like crystals in dichloromethane (1DCM) or plate-like ones in tetrahydrofuran (1THF) depending on the recrystallisation solvent. X-ray crystallography analyses revealed the alkyl chains of the molecules, in which they were assembled differently, with the former responding flexibly bendable and elastic deformation, and the later being a permanent plastic one by external mechanical stress. The elastic modulus (E) and hardness (H) indicating both compliant and soft nature, reflecting their weak interaction in crystals, were quantified from the nano-indentation test.


Assuntos
Plásticos , Módulo de Elasticidade , Dureza , Solventes , Estresse Mecânico
11.
Chempluschem ; 87(4): e202200003, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35333452

RESUMO

The development of efficient proton conductors that are capable of high power density, sufficient mechanical strength, and reduced gas permeability is challenging. Herein, we report the development of a series of aromatic sulfonic acid/graphene oxide hybrid membranes incorporating benzene sulfonic acid (BS), naphthalene sulfonic acid (NS), naphthalene disulfonic acid (DS) or pyrene sulfonic acid (PS) using a facile freeze dried method. For out-of-plane proton conductivity, the 3DGO-BS and 3DGO-NS yielded proton conductivities of 4.4×10-2  S cm-1 and 3.1×10-2  S cm-1 , respectively; this represents a two-times higher value than that which occurs for three dimensional graphene oxide (3DGO). Additionally, the respective prepared films as membranes in a proton exchange membrane fuel cell (PEMFC) show maximum power density of 98.76 mW cm-2 for 3DGO-NS while it is 92.75 mW cm-2 for 3DGO-BS which are close to double that obtained for 3DGO (50 mW cm-2 ).

12.
Chemistry ; 28(5): e202103367, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34846768

RESUMO

Magnetoelectric (ME) materials exhibiting coupled electric and magnetic properties are of significant interest because of their potential use in memory storage devices, new sensors, or low-consumption devices. Herein, we report a new category of ME material that shows liquid crystal (LC), ferroelectric (FE), and field-induced single molecule magnet (SMM) behaviors. Co(II) complex incorporating alkyl chains of type [Co(3C16 -bzimpy)2 ](BF4 )2 (1; 3C16 -bzimpy=2,2'-(4-hexadecyloxy-2,6-diyl)bis(1-hexadecyl-1H-benzo[d]imidazole)) displayed a chiral smectic C mesophase in the temperature range 321 K-458 K, in which distinct FE behavior was observed, with a remnant polarization (88.3 nC cm-2 ). Complex 1 also exhibited field-induced slow magnetic relaxation behavior that reflects the large magnetic anisotropy of the Co(II) center. Furthermore, the dielectric property of 1 was able to be tuned by an external magnetic field occurring from both spin-lattice coupling and molecular orientational variation. Clearly, this multifunctional compound, combining LC, FE, and SMM properties, represents an entry to the development of a range of next-generation ME materials.

13.
Phys Chem Chem Phys ; 23(42): 24233-24238, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34668901

RESUMO

The interlayer spaces in two dimensional (2D) layered materials such as graphene, metal oxides and metal chalcogenides can be used in a number of roles that include the trapping of gases, for ion transfer and for water purification applications. In such spaces, "inner" pressure occurs on guest species enclosed between the layers and its variation can, in principal, be used for precisely controlling particular guest properties. In this study, a mixture of two 2D materials including graphene oxide (GO) and nickel hydroxide (Ni(OH)2), was employed to yield an anisotropic GO-Ni(OH)2 hybrid 2D sheet. The inner pressure associated with this material was able to be tuned by reduction of the GO (to yield rGO) and this in turn was shown to affect the magnetic behaviour of Ni(OH)2. The ferromagnetic transition temperature (Tc) for Ni(OH)2 decreases as the interlayer distance became shorter, which is opposite to the behaviour observed for the application of hydrostatic pressure to the hybrid sheet. The uniaxial pressure affecting the interlayer of the 2D material, and generated by the reduction of GO to rGO, has the potential to not only influence the behaviour of a range of magnetic materials, but also individual properties of other types of functional materials.

14.
Inorg Chem ; 60(13): 9456-9460, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34132544

RESUMO

The iron-based tetraoxolene honeycomb-layered compound (NPr4)2[Fe2(Cl2An)3] (1; NPr4+ = tetrapropylammonium cation; Cl2An2- = 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinonate) was used as the cathode material for lithium-ion batteries. We observed a charge-cycling performance (∼16 times) with three electrons/Li+ ion insertion and extraction, corresponding to the stoichiometry redox of Cl2An2- + e- ↔ Cl2An·3- and Fe3+ + e- ↔ Fe2+. The generation/annihilation of radicals, Cl2An·3-, enables the significant improvement/deterioration of the magnetic phase transition temperature with Tc = 100 K.

15.
J Mater Chem B ; 9(25): 5043-5046, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34151333

RESUMO

Herein, we report the encapsulation and release of antimalarial drug quinine (QN) using three nanocarriers, including MCM-41 (1), and its 3-aminopropyl silane (aMCM-41 (2)) and 3-phenylpropyl silane (pMCM-41 (3)) surface functionalized derivatives. The pH and thermal optimization effects on QN adsorption and release from 1, 2 and 3 were investigated.


Assuntos
Antimaláricos/química , Nanopartículas/química , Quinina/química , Dióxido de Silício/química , Cápsulas/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Estrutura Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície
16.
Dalton Trans ; 50(22): 7843-7853, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34008663

RESUMO

The magnetic properties and structural aspects of the 1-D cobalt(ii) complexes, [Co(pyterpy)Cl2]·2H2O (1·2H2O; pyterpy = 4'-(4'''-pyridyl)-2,2':6',2''-terpyridine) and [Co(pyethyterpy)Cl2]·2H2O (2·2H2O; pyethyterpy = 4'-((4'''-pyridyl)ethynyl)-2,2':6',2''-terpyridine) are reported. In each complex the central cobalt(ii) ion displays an octahedral coordination environment composed of three nitrogen donors from the terpyridine moiety, a nitrogen donor from a pyridyl group and two chloride ligands which occupy the axial sites. 1·2H2O exhibits abrupt spin-crossover (SCO) behaviour (T1/2↓ = 218 K; T1/2↑ = 227 K) along with a thermal hysteresis loop, while 2·2H2O and the dehydrated species 1 and 2 exhibit high-spin (HS) states at 2-300 K as well as field-induced single-molecule magnet (SMM) behaviour attributed to the presence of magnetic anisotropic HS cobalt(ii) species (S = 3/2). 1·2H2O exhibited reversible desorption/resorption of its two water molecules, revealing reversible switching between SCO and SMM behaviour triggered by the dehydration/rehydration processes. Single crystal X-ray structural analyses revealed that 1·2H2O crystalizes in the orthorhombic space group Pcca while 2 and 2·2H2O crystallize in the monoclinic space group P2/n. Each of the 1-D chains formed by 1·2H2O in the solid state are bridged by hydrogen bonds between water molecules and chloride groups to form a 2-D layered structure. The water molecules bridging 1-D chains in 1·2H2O interact with the chloride ligands occupying the axial positions, complementing the effect of Jahn-Teller distortion and contributing to the abrupt SCO behaviour and associated stabilization of the LS state.

17.
Dalton Trans ; 50(16): 5428-5432, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33908958

RESUMO

Mn(iii) complexes with achiral ligands, (E)-N-(2-((2-aminobenzylidene)amino)-2-methylpropyl)-5-X-2-hydroxybenzamide (HLX, X = H, Cl, Br, and I), crystallise as chiral conglomerates containing amide oxygen-bridged one-dimensional coordination polymers that exhibit weak ferromagnetism. The bulk products exhibit symmetry breaking in that they do not contain equal amounts of enantiomers, though which is the dominant species depends on the substituent X.

18.
Nanoscale ; 13(10): 5530-5535, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33688871

RESUMO

Bifunctional electrocatalytic properties of freeze-dried Ni/NiOx, freeze-dried NiO, and freeze-dried Ni(OH)2 are reported. Freeze-dried Ni(OH)2 was synthesized by the freeze-drying method. Freeze-dried Ni/NiOx and freeze-dried Ni were obtained from the thermal annealing of the material. Both Ni(OH)2 and Ni/NiOx could sustain with freestanding freeze-dried 3D structures without any carbon support. Freeze-dried Ni/NiOx exhibited excellent bifunctional electrocatalytic properties with the ORR performance at 0.62 V (half-wave potential) and OER at 1.47 V (η = 10 mA cm-2). Using freeze-dried metal hydroxides can be considered useful in a wide range of carbon-free applications and can improve the electrocatalytic performance. The bifunctional catalytic activities were calculated to be 0.86, 0.98 and 1.14 V for freeze-dried Ni/NiOx, freeze-dried NiO and freeze-dried Ni(OH)2, respectively. The stacking of 2D sheets into 3D mass seemed to play a vital role behind this excellent bifunctionality of freeze-dried Ni/NiOx. The material reveals possible applications in Zn-air batteries. Besides, the strategy developed herein could be justified to obtain other transition metal-oriented bifunctional electrocatalysts as alternatives to Pt- and Ir/Ru-based expensive benchmark catalysts.

19.
Inorg Chem ; 60(5): 3046-3056, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33472368

RESUMO

Recent developments in research concerning metal-organic frameworks and coordination polymers have provided the successful design of charge-variable molecular frameworks. However, few comprehensive studies exist that investigate the control of charge states in series of molecular frameworks such as these. Herein, we discuss the ionicity diagrams of two series containing electron-donor (D) and -acceptor (A) units: one-dimensional DA chains and two-dimensional D2A layers. The series were obtained by reacting paddlewheel-type diruthenium(II,II) complexes ([Ru2II,II]), which served as D units, with the polycyano-organic acceptors N,N'-dicyanoquinodiimine (DCNQI) and 7,7,8,8-tetracyano-p-quinodimethane (TCNQ), which served as A units. Fifteen novel members of neutral charged DA chains were fabricated in this study to characterize the ionicity diagrams for DA and D2A systems.

20.
RSC Adv ; 11(55): 34558-34563, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-35494741

RESUMO

The viability of biorefining technology primarily depends on the facile cellulose conversion route with adequate conversion efficiency. Here we have demonstrated the microwave-assisted hydrolysis of cellulose to glucose using polyoxometalate (POM) clusters as acid catalysts. Two different types of POM, including Wells-Dawson and Keggin were justified as catalysts in the cellulose conversion process. In particular, the cellulose to glucose catalytic conversion using Wells-Dawson type POMs has not been reported to date. Also, even though there have been some previous reports about the catalytic biomass conversion of Keggin type POMs, the systematic study to optimize the conversion efficiency in terms of catalyst amount, reaction temperature, reaction time, and the amount of solvent is lacking. Under the experimental conditions employed, the Keggin-type catalyst showed higher cellulose conversion and glucose yield than the Wells-Dawson-type catalyst. Furthermore, the cellulose conversion efficiency and glucose yields were optimized by tuning the reaction conditions including temperature, reaction time, and the amount of solvent. Under optimized conditions, the Keggin-type POM catalyst shows a remarkably high glucose yield of 77.2% and a cellulose conversion of 90.1%. The unique complex properties of the POM catalyst, including being (i) strong acids with extremely high Brønsted and Lewis acidity and (ii) efficient microwave adsorbants which enhanced interaction between substrate and the catalyst can be attributed to the outstanding efficacy of the conversion process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...