Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 7489, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097744

RESUMO

The influence of an applied magnetic field on the formation of carbon materials from coal tar pitch is investigated. Under an applied magnetic field, crystallites in a mesophase resembling liquid crystals are magnetically oriented during the carbonization process. Compared with that under a nonmagnetic field, carbonized coal tar pitch under a strong magnetic field of 10 T, generated by a superconducting magnet, has a highly oriented structure of carbon crystallites. The orientation of samples prepared under 2 T, which can easily be supplied by an electromagnet, was insufficient. Activation by potassium hydroxide is effective for affording a precursor for activated carbon. The activated carbon obtained under a strong magnetic field has a unique adsorption ability, which arises from its increase in relative surface area and total pore volume compared with those of an activated carbon sample prepared from a precursor produced under zero magnetic field. The precursor carbonized under a magnetic field of 10 T contains a larger number of crystallites than that carbonized under a 0-T magnetic field, which leads to high-performance activated carbon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...