Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(3): 638-652, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38294781

RESUMO

A simple approach was developed to computationally construct a polymer dataset by combining simplified molecular-input line-entry system (SMILES) strings of a targeted polymer backbone and a variety of molecular fragments. This method was used to create 14 polymer datasets by combining seven polymer backbones and molecules from two large molecular datasets (MOSES and QM9). Polymer backbones that were studied include four polydimethylsiloxane (PDMS) based backbones, poly(ethylene oxide) (PEO), poly(allyl glycidyl ether) (PAGE), and polyphosphazene (PPZ). The generated polymer datasets can be used for various cheminformatics tasks, including high-throughput screening for gas permeability and selectivity. This study utilized machine learning (ML) models to screen the polymers for CO2/CH4 and CO2/N2 gas separation using membranes. Several polymers of interest were identified. The results highlight that employing an ML model fitted to polymer selectivities leads to higher accuracy in predicting polymer selectivity compared to using the ratio of predicted permeabilities.


Assuntos
Dióxido de Carbono , Polímeros , Polietilenoglicóis , Quimioinformática , Ensaios de Triagem em Larga Escala
2.
Adv Mater ; 35(39): e2301293, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37432766

RESUMO

Sensing technologies based on plasmonic nanomaterials are of interest for various chemical, biological, environmental, and medical applications. In this work, an incorporation strategy of colloidal plasmonic nanoparticles (pNPs) in microporous polymer for realizing distinct sorption-induced plasmonic sensing is reported. This approach is demonstrated by introducing tin-doped indium oxide pNPs into a polymer of intrinsic microporosity (PIM-1). The composite film (pNPs-polymer) provides distinct and tunable optical features on the fiber optic (FO) platform that can be used as a signal transducer for gas sensing (e.g., CO2 ) under atmospheric conditions. The resulting pNPs-polymer composite demonstrates high sensitivity response on FO in the evanescent field configuration, provided by the dramatic response of modes above the total-internal-reflection angle. Furthermore, by varying the pNPs content in the polymer matrix, the optical behavior of the pNPs-polymer composite film can be tuned to affect the operational wavelength by over several hundred nanometers and the sensitivity of the sensor in the near-infrared range. It is also shown that the pNPs-polymer composite film exhibits remarkable stability over a period of more than 10 months by mitigating the physical aging issue of the polymer.

3.
Membranes (Basel) ; 11(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672335

RESUMO

In this perspective article, we provide a detailed outlook on recent developments of high-performance membranes used in CO2 separation applications. A wide range of membrane materials including polymers of intrinsic microporosity, thermally rearranged polymers, metal-organic framework membranes, poly ionic liquid membranes, and facilitated transport membranes were surveyed from the recent literature. In addition, mixed matrix and polymer blend membranes were covered. The CO2 separation performance, as well as other membrane properties such as film flexibility, processibility, aging, and plasticization, were analyzed.

4.
ACS Appl Mater Interfaces ; 11(34): 30987-30991, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31368688

RESUMO

Here, we present novel chemical sorbents based on polymers with intrinsic microporosity (PIMs). For the first time, alkylamines were incorporated in PIMs through an acid-base interaction to create a chemisorbent. The amine-appended PIMs not only showed a nearly four-fold enhancement in CO2 loading capacity (36.4 cc/g at 0.15 bar and 298 K) and very high CO2/N2 selectivity compared to neat PIM-1 but also proved to have stable performance when cycled between adsorption and desorption isotherms under both dry and humid conditions that are typical for postcombustion CO2 capture.

5.
Chem Commun (Camb) ; 52(79): 11768-11771, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27722238

RESUMO

This study presents the fabrication of a new mixed matrix membrane using two microporous polymers: a polymer of intrinsic microporosity PIM-1 and a benzimidazole linked polymer, BILP-101, and their CO2 separation properties from post-combustion flue gas. 17, 30 and 40 wt% loadings of BILP-101 into PIM-1 were tested, resulting in mechanically stable films showing very good interfacial interaction due to the inherent H-bonding capability of the constituent materials. Gas transport studies showed that BILP-101/PIM-1 membranes exhibit high CO2 permeability (7200 Barrer) and selectivity over N2 (15). The selected hybrid membrane was further tested for CO2 separation using actual flue gas from a coal-fired power plant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...