Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biodivers Data J ; 11: e105314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327301

RESUMO

Background: The Mekong River is the 10th largest river in the world. It is recognised as the most productive river in Southeast Asia and economically essential to the region, with an estimated 60-65 million people living in the lower Mekong Basin. The Mekong Delta within Vietnam is considered a highly vulnerable ecosystem under threat from increasing anthropogenic pressure, such as dam construction and, as a consequence, the Delta is sinking and altering the natural hydrological cycle. Dams also lead to eutrophication and pollution of downstream water from regulated water flux and water stagnation. Another threat is climate change coupled with the lower rainfall, which could lead to an increased risk of drought in the Mekong Delta Basin. Thus, these project data represent an important baseline reference. The ecological health of the Mekong Delta's environment, as indicated by the quality and availability of its water and biological resources, largely determines the economic and social development of the region, which produces about half of the agriculture and aquaculture products of Vietnam. New information: This paper reports quantitative data on the biodiversity of six groups of aquatic organisms: bottom and pelagic fish, macrozoobenthos, microorganisms, phyto- and zooplankton in the Mekong Delta within Vietnam, as well as data on the physicochemical parameters of water and bottom sediments. The data were collected during 2018-2022 as part of the Ecolan E-3.4 programme within the framework of the research plan of the Joint Russian-Vietnamese Tropical Research and Technological Center. All presented datasets are published for the first time.

2.
PLoS One ; 15(12): e0244339, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33373382

RESUMO

The shape of the male genitalia in many taxa is the most rapidly evolving morphological structure, often driving reproductive isolation, and is therefore widely used in systematics as a key character to distinguish between sibling species. However, only a few studies have used the genital arch of the male copulatory organ as a model to study the genetic basis of species-specific differences in the Drosophila copulatory system. Moreover, almost nothing is known about the effects of the sex chromosomes on the shape of the male mating organ. In our study, we used a set of crosses between D. virilis and D. lummei and applied the methods of quantitative genetics to assess the variability of the shape of the male copulatory organ and the effects of the sex chromosomes and autosomes on its variance. Our results showed that the male genital shape depends on the species composition of the sex chromosomes and autosomes. Epistatic interactions of the sex chromosomes with autosomes and the species origin of the Y-chromosome in a male in interspecific crosses also influenced the expression of species-specific traits in the shape of the male copulatory system. Overall, the effects of sex chromosomes were comparable to the effects of autosomes despite the great differences in gene numbers between them. It may be reasonably considered that sexual selection for specific genes associated with the shape of the male mating organ prevents the demasculinization of the X chromosome.


Assuntos
Drosophila/anatomia & histologia , Drosophila/classificação , Característica Quantitativa Herdável , Cromossomos Sexuais/genética , Animais , Cromossomos de Insetos/genética , Cruzamentos Genéticos , Drosophila/genética , Epistasia Genética , Feminino , Genitália Masculina/anatomia & histologia , Masculino , Tamanho do Órgão , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...