Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(9): e202318181, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38179847

RESUMO

Heterostructures of two-dimensional materials realise novel and enhanced physical phenomena, making them attractive research targets. Compared to inorganic materials, coordination nanosheets have virtually infinite combinations, leading to tunability of physical properties and are promising candidates for heterostructure fabrication. Although stacking of coordination materials into vertical heterostructures is widely reported, reports of lateral coordination material heterostructures are few. Here we show the successful fabrication of a seamless lateral heterojunction showing diode behaviour, by sequential and spatially limited immersion of a new metalladithiolene coordination nanosheet, Zn3 BHT, into aqueous Cu(II) and Fe(II) solutions. Upon immersion, the Zn centres in insulating Zn3 BHT are replaced by Cu or Fe ions, resulting in conductivity. The transmetallation is spatially confined, occurring only within the immersed area. We anticipate that our results will be a starting point towards exploring transmetallation of various two-dimensional materials to produce lateral heterojunctions, by providing a new and facile synthetic route.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37681781

RESUMO

Shift work requires round-the-clock readiness to perform professional duties, and the workers' performance highly depends on their sleepiness level, which can be underestimated during a shift. Various factors, including the time of day, can influence sleepiness in shift workers. The objective of this study was to explore the dynamics of sleepiness-related conditions assessed through heart rate variability analysis, starting from the biological evening and continuing in vivo (at home), without the need for artificial alertness support. The participants solely performed regular evening household duties. A total of 32 recordings were collected from the Subjective Sleepiness Dynamics Dataset for analysis. At 8:00 p.m. and every 30 min thereafter, the participants completed cyclic sleepiness scales (the KSS and the SSS) until the time they went to bed, while their heart rate was recorded. The results of the study indicated that during the biological evening, high sleepiness is associated with a 'stressed' condition characterized by higher sympathetic activation. Later on, it is associated with a 'drowsy' condition characterized by higher parasympathetic activation and a decline in heart rate variability. Our findings provide evidence that the type of condition experienced during high sleepiness depends on the biological time. This should be taken into account when managing work regimes in shift work and developing alertness detectors.


Assuntos
Transtornos do Sono-Vigília , Humanos , Frequência Cardíaca , Registros , Sonolência
3.
Adv Mater ; 34(13): e2106204, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35040527

RESUMO

Coordination nanosheets are an emerging class of 2D, bottom-up materials having fully π-conjugated, planar, graphite-like structures with high electrical conductivities. Since their discovery, great effort has been devoted to expand the variety of coordination nanosheets; however, in most cases, their low crystallinity in thick films hampers practical device applications. In this study, mixtures of nickel and copper ions are employed to fabricate benzenehexathiolato (BHT)-based coordination nanosheet films, and serendipitously, it is found that this heterometallicity preferentially forms a structural phase with improved film crystallinity. Spectroscopic and scattering measurements provide evidence for a bilayer structure with in-plane periodic arrangement of copper and nickel ions with the NiCu2 BHT formula. Compared with homometallic films, heterometallic films exhibit more crystalline microstructures with larger and more oriented grains, achieving higher electrical conductivities reaching metallic behaviors. Low dependency of Seebeck coefficient on the mixing ratio of nickel and copper ions supports that the large variation in the conductivity data is not caused by change in the intrinsic properties of the films. The findings open new pathways to improve crystallinity and to tune functional properties of 2D coordination nanosheets.

4.
Adv Mater ; 33(37): e2008708, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34342927

RESUMO

While the charge transport properties of organic semiconductors have been extensively studied over the recent years, the field of organics-based thermoelectrics is still limited by a lack of experimental data on thermal transport and of understanding of the associated structure-property relationships. To fill this gap, a comprehensive experimental and theoretical investigation of the lattice thermal conductivity in polycrystalline thin films of dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (Cn-DNTT-Cn with n = 0, 8) semiconductors is reported. Strikingly, thermal conductivity appears to be much more isotropic than charge transport, which is confined to the 2D molecular layers. A direct comparison between experimental measurements (3ω-Völklein method) and theoretical estimations (approach-to-equilibrium molecular dynamics (AEMD) method) indicates that the in-plane thermal conductivity is strongly reduced in the presence of the long terminal alkyl chains. This evolution can be rationalized by the strong localization of the intermolecular vibrational modes in C8-DNTT-C8 in comparison to unsubstituted DNTT cores, as evidenced by a vibrational mode analysis. Combined with the enhanced charge transport properties of alkylated DNTT systems, this opens the possibility to decouple electron and phonon transport in these materials, which provides great potential for enhancing the thermoelectric figure of merit ZT.

5.
Sci Adv ; 7(18)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33910909

RESUMO

We investigate the charge transport physics of a previously unidentified class of electron-deficient conjugated polymers that do not contain any single bonds linking monomer units along the backbone but only double-bond linkages. Such polymers would be expected to behave as rigid rods, but little is known about their actual chain conformations and electronic structure. Here, we present a detailed study of the structural and charge transport properties of a family of four such polymers. By adopting a copolymer design, we achieve high electron mobilities up to 0.5 cm2 V-1 s-1 Field-induced electron spin resonance measurements of charge dynamics provide evidence for relatively slow hopping over, however, long distances. Our work provides important insights into the factors that limit charge transport in this unique class of polymers and allows us to identify molecular design strategies for achieving even higher levels of performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA