Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 203: 116439, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718549

RESUMO

Saint Martin Island (SMI), the only coral island in Bangladesh, is located in the Bay of Bengal and has been identified as a marine protected area (MPA). Littering cigarette butts (CBs) waste in an ecologically sensitive environment can have numerous adverse effects. The purpose of this research is to investigate the abundance and density of CBs in SMI and to assess the pollution status using the Cigarette Butt Pollution Index (CBPI). This study is conducted based on the visual survey method in the three types of land use zones of SMI. During the peak season, the investigation was carried out from 9 a.m. to 5 p.m. in December 2023. A total of 4481 CBs item were counted, and the density ranged from 0.37 to 1.76 m-2 with an average value of 0.99 m-2 across 12 sampling campaigns. The highest density was observed at service zones, and the fishing zones had the lowest density. The calculated CBPI values revealed that 75 % of the sampling stations were in the "severe pollution" while 25 % were classified as "high pollution" status, underscoring the prevalence of hazardous CBs across most areas of SMI. To tackle these issues requires regulatory measures, public awareness initiatives, and community involvement. Effective waste management and eco-friendly product promotion can help reduce CBs pollution risks in marine protected islands.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental , Ilhas , Bangladesh , Produtos do Tabaco
2.
Int J Pharm X ; 7: 100240, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38577618

RESUMO

Bimatoprost (BIM) is a prostaglandin F2α analogs originally approved for the treatment of glaucoma and ocular hypertension. Recent studies have highlighted its potential to boost hair growth. The objective of this investigation is to challenge the potential of spanlastics (SLs) as a surfactant-based vesicular system for promoting the cutaneous delivery of BIM for the management of alopecia. BIM-loaded spanlastics (BIM-SLs), composed of Span as the main vesicle component and Tween as the edge activator, were fabricated by ethanol injection method. The formulated BIM-SLs were optimized by 23 full factorial design. The optimized formula (F1) was characterized for entrapment efficiency, surface charge, vesicle size, and drug release after 12 h (Q12h). The optimized formula (F1) exhibited high drug entrapment efficiency (83.1 ± 2.1%), appropriate zeta potential (-19.9 ± 2.1 mV), Q12h of 71.3 ± 5.3%, and a vesicle size of 364.2 ± 15.8 nm, which favored their cutaneous accumulation. In addition, ex-vivo skin deposition studies revealed that entrapping BIM within spanlastic-based nanogel (BIM-SLG) augmented the dermal deposition of BIM, compared to naïve BIM gel. Furthermore, in vivo studies verified the efficacy of spanlastic vesicles to boost the cutaneous accumulation of BIM compared to naive BIM gel; the AUC0-12h of BIM-SLG was 888.05 ± 72.31 µg/mL.h, which was twice as high as that of naïve BIM gel (AUC0-12h 382.86 ± 41.12 µg/mL.h). Intriguingly, BIM-SLG outperforms both naïve BIM gel and commercial minoxidil formulations in stimulating hair regrowth in an androgenetic alopecia mouse model. Collectively, spanlastic vesicles might be a potential platform for promoting the dermal delivery of BIM in managing alopecia.

3.
Saudi Pharm J ; 31(9): 101734, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37649675

RESUMO

Cetirizine hydrochloride (CTZ), a second-generation anti-histaminic drug, has been recently explored for its effectiveness in the treatment of alopecia. Niosomes are surfactant-based nanovesicular systems that have promising applications in both topical and transdermal drug delivery. The aim of this study was to design topical CTZ niosomes for management of alopecia. Thin film hydration technique was implemented for the fabrication of CTZ niosomes. The niosomes were examined for vesicle size, surface charge, and entrapment efficiency. The optimized niosomal formulation was incorporated into a hydrogel base (HPMC) and explored for physical characteristics, ex vivo permeation, and in vivo dermato-kinetic study. The optimized CTZ-loaded niosomal formulation showed an average size of 403.4 ± 15.6 nm, zeta potential of - 12.9 ± 1.7 mV, and entrapment efficiency percentage of 52.8 ± 1.9%. Compared to plain drug solution, entrapment of CTZ within niosomes significantly prolonged in vitro drug release up to 12 h. Most importantly, ex-vivo skin deposition studies and in vivo dermato-kinetic studies verified superior skin deposition/retention of CTZ from CTZ-loaded niosomal gels, compared to plain CTZ gel. CTZ-loaded niosomal gel permitted higher drug deposition percentage (19.2 ± 1.9%) and skin retention (AUC0-10h 1124.5 ± 87.9 µg/mL.h) of CTZ, compared to 7.52 ± 0.7% and 646.2 ± 44.6 µg/mL.h for plain CTZ gel, respectively. Collectively, niosomes might represent a promising carrier for the cutaneous delivery of cetirizine for the topical management of alopecia.

4.
Nanomaterials (Basel) ; 13(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37513094

RESUMO

The present study applied a nano-synergistic approach to enhance besifloxacin's potency via nano-formulating besifloxacin on gold nanoparticles (Besi-AuNPs) and adding quercetin as a natural synergistic compound. In fact, a one-pot AuNP synthesis approach was applied for the generation of Besi-AuNPs, where besifloxacin itself acted as a reducing and capping agent. Characterization of Besi-AuNPs was performed by spectrophotometry, DLS, FTIR, and electron microscopy techniques. Moreover, antibacterial assessment of pure besifloxacin, Besi-AuNPs, and their combinations with quercetin were performed on Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. UV-spectra showed a peak of AuNPs at 526 nm, and the electron microscopy-based size was estimated to be 15 ± 3 nm. The effective MIC50 concentrations of besifloxacin after loading on AuNPs were reduced by approximately 50% against the tested bacterial strains. Interestingly, adding quercetin to Besi-AuNPs further enhanced their antibacterial potency, and isobologram analysis showed synergistic potential (combination index below 1) for different quercetin and Besi-AuNP combinations. However, Besi-AuNPs and quercetin combinations were most effective against Gram-positive S. aureus in comparison to Gram-negative P. aeruginosa and E. coli. Their potent activity against S. aureus has its own clinical significance, as it is one the main causative agents of ocular infection, and besifloxacin is primarily used for treating infectious eye diseases. Thus, the outcomes of the present study could be explored further to provide better medication for eye infections caused by resistant pathogens.

5.
Pharmaceutics ; 15(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36839753

RESUMO

The advent of new antibiotics has helped clinicians to control severe bacterial infections. Despite this, inappropriate and redundant use of antibiotics, inadequate diagnosis, and smart resistant mechanisms developed by pathogens sometimes lead to the failure of treatment strategies. The genotypic analysis of clinical samples revealed that the rapid spread of extended-spectrum ß-lactamases (ESBLs) genes is one of the most common approaches acquired by bacterial pathogens to become resistant. The scenario compelled the researchers to prioritize the design and development of novel and effective therapeutic options. Nanotechnology has emerged as a plausible groundbreaking tool against resistant infectious pathogens. Numerous reports suggested that inorganic nanomaterials, specifically gold nanoparticles (AuNPs), have converted unresponsive antibiotics into potent ones against multi-drug resistant pathogenic strains. Interestingly, after almost two decades of exhaustive preclinical evaluations, AuNPs are gradually progressively moving ahead toward clinical evaluations. However, the mechanistic aspects of the antibacterial action of AuNPs remain an unsolved puzzle for the scientific fraternity. Thus, the review covers state-of-the-art investigations pertaining to the efficacy of AuNPs as a tool to overcome ESBLs acquired resistance, their applicability and toxicity perspectives, and the revelation of the most appropriate proposed mechanism of action. Conclusively, the trend suggested that antibiotic-loaded AuNPs could be developed into a promising interventional strategy to limit and overcome the concerns of antibiotic-resistance.

6.
Nanomaterials (Basel) ; 12(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296833

RESUMO

Gold nanoparticles have gained popularity as an effective drug delivery vehicle due to their unique features. In fact, antibiotics transported via gold nanoparticles have significantly enhanced their potency in the recent past. The present study used an approach to synthesize gold nanoparticles in one step with the help of cefoxitin antibiotic as a reducing and stabilizing agent. Cefoxitin is a second-generation cephalosporin that loses its potential due to modification in the porins (ompK35 and ompK36) of Gram-negative pathogens. Thus, the present study has developed an idea to revive the potential of cefoxitin against clinical Gram-negative pathogens, i.e., Escherichia coli and Klebsiella pneumoniae, via applying gold nanoparticles as a delivery tool. Prior to antibacterial activity, characterization of cefoxitin-gold nanoparticles was performed via UV-visible spectrophotometry, dynamic light scattering, and electron microscopy. A characteristic UV-visible scan peak for gold nanoparticles was observed at 518 nm, ζ potential was estimated as -23.6 ± 1.6, and TEM estimated the size in the range of 2-12 nm. Moreover, cefoxitin loading efficiency on gold nanoparticles was calculated to be 71.92%. The antibacterial assay revealed that cefoxitin, after loading onto the gold nanoparticles, become potent against cefoxitin-resistant E. coli and K. pneumoniae, and their MIC50 values were estimated as 1.5 µg/mL and 2.5 µg/mL, respectively. Here, gold nanoparticles effectively deliver cefoxitin to the resistant pathogens, and convert it from unresponsive to a potent antibiotic. However, to obtain some convincing conclusions on the human relevance, their fate and toxicity need to be evaluated.

7.
Biomed Pharmacother ; 155: 113697, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36137406

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder imposing a severe health and socioeconomic burden worldwide. Existing pharmacological approaches for developing PD are poorly developed and do not represent all the characteristics of disease pathology. Developing cost-effective, reliable Zebrafish (ZF) model will meet this gap. The present study was conceived to develop a reliable PD model in the ZF using manganese chloride (MnCl2). Here, we report that chronic exposure to 2 mM MnCl2 for 21 days produced non-motor and motor PD-like symptoms in adult ZF. Compared with control fish, MnCl2-treated fish showed reduced locomotory activity, indicating a deficit in motor function. In the light-dark box test, MnCl2-treated fish exhibited anxiety and depression-like behavior. MnCl2-treated fish exhibited a less olfactory preference for amino acids, indicating olfactory dysfunction. These behavioral symptoms were associated with decreased dopamine and increased DOPAC levels. Furthermore, oxidative stress-mediated apoptotic pathway, decreased brain derived neurotropic factor (BDNF) and increased pro-inflammatory cytokines levels were observed upon chronic exposure to MnCl2 in the brain of ZF. Thus, MnCl2-induced PD in ZF can be a cost-effective PD model in the drug discovery process. Moreover, this model could be potentially utilized to investigate the molecular pathways underlying the multifaceted pathophysiology which leads to PD using relatively inexpensive species. MnCl2 being heavy metal may have other side effects in addition to neurotoxicity. Our model recapitulates most of the hallmarks of PD, but not all pathological processes are involved. Future studies are required to recapitulate the complete pathophysiology of PD.


Assuntos
Doença de Parkinson , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Doença de Parkinson/tratamento farmacológico , Dopamina/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Doenças Neuroinflamatórias , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Estresse Oxidativo , Apoptose , Aminoácidos/metabolismo , Citocinas/metabolismo
8.
Heliyon ; 8(5): e09496, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35647337

RESUMO

This study aimed to evaluate six unconventional feed resources of Bangladesh, including water hyacinth (Eichhornia crassipes), banana leaves (Musa paradisiaca), roadside grass (Stenotaphrum secundatum), bamboo leaves (Bambusa vulgaris Scrad), Seaweed (Hypnea sp.) and sugarcane bagasse (Saccharum griffithii). Evaluations were based on dry matter (DM), crude protein (CP), crude fiber (CF), neutral detergent fiber (NDF), acid detergent fiber (ADF), ether extract (EE), ash content, DM and OM digestibilities and fractional rate of degradation. Two conventional feeds, i.e., rice bran and german grass, were used as the positive control. Samples (400 mg) were incubated with rumen liquor in an in vitro fermentation chamber at 0, 6, 12, 24, 48, 72, and 96 h for the degradation kinetic studies. The CP contents of 10.13, 10.63, 10.21, and 8.49 % were found in seaweed, banana leaf, water hyacinth, and bamboo leaf, respectively. The NDF values ranged between 16.5 and 75.6% and ADF varied from 9.7 to 58.8% in this study. The highest value of NDF (75.6%) and ADF (58.8%) were found in sugar cane bagasse and the lowest value of NDF (16.5%) and ADF (9.7%) were as observed in seaweed. However, higher DM degradation (33.5-42.8%) was found in seaweed during the incubation periods of 24-96 h. A significant (P < 0.05) increased of OM degradation (44.9%) compared to other feed resources was also observed in seaweed at 96 h of in vitro incubation. Water hyacinth, banana leaves, german grass, and sugarcane bagasse had greater DM digestibility (32.9-36.3%) compared to roadside grass, bamboo leaves, and rice bran (24.8-29.1%). The higher total OM digestibility of seaweed found (>44.9%) can be associated with the presence of large quantities of fraction b (>39.2 %), resulting in moderate amounts of undegradable fraction (U) (57.2 %). This study provides a comparative estimate of ruminal DM and OM degradation characteristics for seaweed and some other unconventional feed resources, which might be helpful for their inclusion in the diet according to the ruminally undegraded to degraded DM and OM intake ratio.

9.
Materials (Basel) ; 15(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35161053

RESUMO

The remarkable rise of antibiotic resistance among pathogenic bacteria poses a significant threat to human health. Nanoparticles (NPs) have recently emerged as novel strategies for conquering fatal bacterial diseases. Furthermore, antibiotic-functionalized metallic NPs represent a viable nano-platform for combating bacterial resistance. In this study, we present the use of vancomycin-functionalized gold nanoparticles (V-GNPs) to battle pathogenic bacterial strains. A facile one-pot method was adopted to synthesize vancomycin-loaded GNPs in which the reducing properties of vancomycin were exploited to produce V-GNPs from gold ions. UV-Visible spectroscopy verified the production of V-GNPs via the existence of a surface plasmon resonance peak at 524 nm, whereas transmission electron microscopy depicted a size of ~24 nm. Further, dynamic light scattering (DLS) estimated the hydrodynamic diameter as 77 nm. The stability of V-GNPs was investigated using zeta-potential measurements, and the zeta potential of V-GNPs was found to be -18 mV. Fourier transform infrared spectroscopy confirmed the efficient loading of vancomycin onto GNP surfaces; however, the loading efficiency of vancomycin onto V-GNPs was 86.2%. Finally, in vitro antibacterial studies revealed that V-GNPs were much more effective, even at lower concentrations, than pure vancomycin. The observed antibacterial activities of V-GNPs were 1.4-, 1.6-, 1.8-, and 1.6-fold higher against Gram-negative Escherichia coli, Klebsiella oxytoca, and Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus, respectively, compared to pure vancomycin. Collectively, V-GNPs represented a more viable alternative to pure vancomycin, even at a lower antibiotic dose, in conquering pathogenic bacteria.

10.
Heliyon ; 7(8): e07813, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34466700

RESUMO

Soil salinity in the coastal areas of Bangladesh has been rising. The responses of forest communities to the rise of salinity are somehow documented. However, the adjustments of non-forest plant communities against salinity are still limited in the literature. This study explains the phytosociology and the herbaceous plant biodiversity along with the soil salinity gradients in Shyamnagar, Bangladesh. Twenty-five roadside quadrants were systematically selected and studied for herbaceous plant diversity and soil properties. Soil Electrical conductivity (EC) and moisture show a generally rising trend from the north to the south. Moreover, the quadrants closer to the river or aquaculture with low elevation represent the salinity hot spots. About 1116 herbaceous plants belonging to 11 species were recorded. Croton bonplandianum baill is the dominant species and showed higher adaption capacity against soil EC values. Four out of 25 quadrants with higher EC, moisture and lower elevation recorded no plants. The herbaceous plant biodiversity reveals a strong spatial pattern and tendency to shrink with the rise of soil salinity while progressing towards the southeast direction. The area shows aggregated population, contagious distribution of plant species, and accommodates four dominant clusters. Roadside herbs not only hold medicinal value but also offer important cooking fuel choices to the fuel-scarce coastal communities. The outcome of this study provides important insights into herbaceous plant diversity and its relationships with soil salinity. Overall, the study outcomes improve our understanding of the impact of environmental stressors on the distribution of herbaceous plants in the coastal area.

11.
Parasitol Int ; 84: 102414, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34182122

RESUMO

Cryptosporidium and Giardia are protozoan parasites capable of causing gastrointestinal illness in humans and animals. The purpose of this research was to determine the occurrence, genetic characteristics, and zoonotic potential of Cryptosporidium spp. and Giardia duodenalis in captive mammals at the Bangladesh National Zoo. A total of 200 fresh fecal samples from 32 mammalian species were collected and examined for Cryptosporidium spp. using nested polymerase chain reaction (PCR) targeting the small subunit (SSU) rRNA gene and G. duodenalis targeting the ß-giardin (bg), glutamate dehydrogenase (gdh), and triosephosphate isomerase (tpi) genes. The overall infection rates of Cryptosporidium and G. duodenalis among captive mammals in the zoo were 3.5% (7/200) and 5.5% (11/200), respectively. Five species/genotypes of Cryptosporidium (C. hominis, C. andersoni, C. muris, C. felis, and Cryptosporidium deer genotype) were identified. C. hominis was subtyped as IbA12G3 by sequence analysis of the glycoprotein 60 (gp60) gene. Multilocus genotyping of G. duodenalis revealed assemblages A, B, and D. Mixed infections of assemblages B and D and A and B were found in an Asiatic jackal and a Nilgiri langur, respectively. To our knowledge, this is the first report on the occurrence and genetic identity of the two parasites among zoo animals in Bangladesh. The results suggest that zoonotic Cryptosporidium spp. and G. duodenalis are maintained in and transmitted between captive mammals. Therefore, washing, cleaning, and disinfection measures should be implemented to reduce the spread of Cryptosporidium and G. duodenalis infections.


Assuntos
Criptosporidiose/epidemiologia , Giardíase/veterinária , Mamíferos , Zoonoses/parasitologia , Animais , Animais de Zoológico , Bangladesh/epidemiologia , Criptosporidiose/parasitologia , Cryptosporidium/genética , Cryptosporidium/isolamento & purificação , Giardia lamblia/genética , Giardia lamblia/isolamento & purificação , Giardíase/epidemiologia , Giardíase/parasitologia , Proteínas de Protozoários/análise , Zoonoses/epidemiologia
12.
Biol Pharm Bull ; 37(2): 206-11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24492717

RESUMO

Oxaliplatin (trans-l-diaminocyclohexane oxalatoplatinum; l-OHP), a third-generation platinum antitumor drug, is currently approved in combination with 5-flurouracil (5-FU)/leucovorin (FOLFOX) for standard first- and second-line treatment of metastatic or advanced-stage colorectal cancer. Despite l-OHP's better tolerability in comparison with other platinum compounds such as cisplatin and carboplatin, its clinical efficiency is limited by the dose-limiting side effects including cumulative neurotoxicity and acute dysesthesias. In addition, like other platinum chemotherapeutic agents, l-OHP therapy is limited by reduced accumulation levels in tumor tissues, nonselective accumulation in healthy organs and/or tissues, inactivation by conjugation with glutathione, and the development of drug resistance. Accordingly, successful outcome of cancer treatment using l-OHP requires selective delivery of a relatively high concentration of the drug to tumor tissues. In this review we focus on utilization of different drug-delivery vehicles such as liposomes, polymeric nanocarriers, and carbon nanotubes in enhancing selective delivery of l-OHP to tumor tissues and consequently improving overall efficacy of l-OHP-containing drug-delivery systems.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Portadores de Fármacos , Nanopartículas , Compostos Organoplatínicos/administração & dosagem , Animais , Antineoplásicos/uso terapêutico , Humanos , Compostos Organoplatínicos/uso terapêutico , Oxaliplatina
13.
Appl Environ Microbiol ; 71(8): 4214-9, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16085805

RESUMO

A new real-time PCR assay was successfully developed using a TaqMan fluorescence probe for specific detection and enumeration of a novel bacterium, Lactobacillus thermotolerans, in chicken feces. The specific primers and probe were designed based on the L. thermotolerans 16S rRNA gene sequences, and these sequences were compared to those of all available 16S rRNA genes in the GenBank database. The assay, targeting 16S rRNA gene, was evaluated using DNA from a pure culture of L. thermotolerans, DNA from the closely related bacteria Lactobacillus mucosae DSM 13345(T) and Lactobacillus fermentum JCM 1173(T), and DNA from other lactic acid bacteria in quantitative experiments. Serial dilutions of L. thermotolerans DNA were used as external standards for calibration. The minimum detection limit of this technique was 1.84 x 10(3) cells/ml of an L. thermotolerans pure culture. The assay was then applied to chicken feces in two different trials. In the first trial, the cell population was 10(4) cells/g feces on day 4 and 10(5) cells/g feces on days 11 to 18. However, cell populations of 10(6) to 10(7) cells/g feces were detected in the second trial. The total bacterial count, measured by 4',6-diamidino-2-phenylindole (DAPI) staining, was approximately 10(11) cells/g feces. These results suggest that in general, L. thermotolerans is a normal member of the chicken gut microbiota, although it is present at relatively low levels in the feces.


Assuntos
Galinhas/microbiologia , Fezes/microbiologia , Temperatura Alta , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Animais , Contagem de Colônia Microbiana , Primers do DNA , DNA Bacteriano/análise , Lactobacillus/classificação , Lactobacillus/genética , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...