Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12671, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830937

RESUMO

Photocatalysis is a promising technique to reduce hazardous organic pollutants using semiconductors under visible light. However, previous studies have been concerned with the behavior of silver phosphate (Ag3PO4) as n-type semiconductors, and the problem of their instability is still under investigation. Herein, 4,4'-(((oxalylbis(azanediyl)) bis(carbonothioyl)) bis(azanediyl)) dibenzoic acid is synthesized by green method and used to enhance the photocatalytic behavior for Ag3PO4. The incorporated Ag3PO4 core-shell is prepared and characterized via XRD, FT-IR, Raman, TEM and BET. Besides, the thermal stability of the prepared core shell was investigated via TGA and DSC measurements. The optical properties and the energy band gap are determined using photoluminescence and DRS measurements. The photodegradation of methylene blue in the presence of the synthesized Ag3PO4 core-shell under visible light is examined using UV/Vis measurements. The effect of initial dye concentration and contact time are studied. In addition, the kinetic behavior of the selected dye during the photodegradation process shows a pseudo-first order reaction with rate constant of 0.015 min-1 for ZAg. The reusability of the Ag3PO4 core shell is evaluated, and the efficiency changed from 96.76 to 94.02% after three cycles, indicating efficient photocatalytic behavior with excellent stability.

2.
Sci Rep ; 14(1): 2456, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291055

RESUMO

The tertiary composite of TiO2/CuO @ Ag (TCA) were synthesized by the solid state method using different ratios of TiO2/CuO NCs and Ag NPs. The structural, morphological, and optical properties of nanocomposites were analyzed by scanning electron microscope, Transmission electron microscope, X-ray diffraction, Fourier transform infrared spectra, UV-Vis diffuse reflectance spectra (UV-Vis/DRS) and photoluminescence spectrophotometry. The results showed enhanced activity of TCA hybrid nano crystals in oxidizing MB in water under visible light irradiation compared to pure TiO2. The photocatalytic performance TCA samples increased with suitable Ag content. The results show that the photo degradation efficiency of the TiO2 compound improved from 13 to 85% in the presence of TiO2-CuO and to 98.87% in the presence of Ag containing TiO2-CuO, which is 7.6 times higher than that of TiO2. Optical characterization results show enhanced nanocomposite absorption in the visible region with long lifetimes between e/h+ at optimal TiO2-CuO/Ag (TCA2) ratio. Reusable experiments indicated that the prepared TCA NC photo catalysts were stable during MB photo degradation and had practical applications for environmental remediation.

3.
Environ Sci Pollut Res Int ; 31(2): 2297-2313, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38062214

RESUMO

In this study, we developed a novel nanocomposite-based membrane using maghemite copper oxide (MC) to enhance the separation efficiency of poly(vinyl chloride) (PVC) membranes for oil-in-water emulsions. The MC nanocomposite was synthesized using a co-precipitation method and incorporated into a PVC matrix by casting. The resulting nanocomposite-based membrane demonstrated a high degree of crystallinity and well-dispersed nanostructure, as confirmed by TEM, SEM, XRD, and FT-IR analyses. The performance of the membrane was evaluated in terms of water flux, solute rejection, and anti-fouling properties. The pinnacle of performance was unequivocally reached with a solution dosage of 50 mL, a solution concentration of 100 mg L-1, and a pump pressure of 2 bar, ensuring that every facet of the membrane's potential was fully harnessed. The new fabricated membrane exhibited superior efficiency for oil-water separation, with a rejection rate of 98% and an ultra-high flux of 0.102 L/m2 h compared to pure PVC membranes with about 90% rejection rate and an ultra-high flux of 0.085 L/m2 h. Furthermore, meticulous contact angle measurements revealed that the PMC nanocomposite membrane exhibited markedly lower contact angles (65° with water, 50° with ethanol, and 25° with hexane) compared to PVC membranes. This substantial reduction, transitioning from 85 to 65° with water, 65 to 50° with ethanol, and 45 to 25° with hexane for pure PVC membranes, underscores the profound enhancement in hydrophilicity attributed to the heightened nanoparticle content. Importantly, the rejection efficiency remained stable over five cycles, indicating excellent anti-fouling and cycling stability. The results highlight the potential of the maghemite copper oxide nanocomposite-based PVC membrane as a promising material for effective oil-in-water emulsion separation. This development opens up new possibilities for more flexible, durable, and anti-fouling membranes, making them ideal candidates for potential applications in separation technology. The presented findings provide valuable information for the advancement of membrane technology and its utilization in various industries, addressing the pressing challenge of oil-induced water pollution and promoting environmental sustainability.


Assuntos
Incrustação Biológica , Compostos Férricos , Nanocompostos , Cobre , Hexanos , Emulsões/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nanocompostos/química , Água/química , Etanol , Membranas Artificiais
4.
Sci Rep ; 13(1): 8845, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258591

RESUMO

Investigate the use of visible light to improve photocatalytic degradation of organic pollutants in wastewater. Nitrogen-doped titania and molybdenum sulfide nanocomposites (NTM NCs) with different weight ratios of MoS2 (1, 2, and 3 wt.%) synthesized by a solid state method applied to the photodegradation of methylene blue(MB) under visible light irradiation. The synthesized NTM composites were characterized by SEM, TEM, XRD, FT-IR, UV-Vis, DRS and PL spectroscopy. The results showed enhanced activity of NTM hybrid nanocrystals in oxidizing MB in water under visible light irradiation compared to pure TiO2. The photocatalytic performance of NTM samples increased with MoS2 content. The results show that the photodegradation efficiency of the TiO2 compound improved from 13 to 82% in the presence of N-TiO2 and to 99% in the presence of MoS2 containing N-TiO2, which is 7.61 times higher than that of TiO2. Optical characterization results show enhanced nanocomposite absorption in the visible region with long lifetimes between e/h+ at optimal N-TiO2/MoS2 (NTM2) ratio. Reusable experiments indicated that the prepared NTM NCs photocatalysts were stable during MB photodegradation and had practical applications for environmental remediation.

5.
J Environ Health Sci Eng ; 20(1): 265-280, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35669819

RESUMO

Magnetic core-shell TiO2@CoFe3O4 (TCM) composite photocatalytic particles with a core-shell structure were synthesized by the co-precipitation method as a novel catalyst for methylene blue (MB) dye degradation and adsorption efficiency of heavy-metal ion Pb(II) from aqueous solution. Various analytical techniques have verified the formation of the TCM core-shell through TEM, XRD, FT-IR, Raman, PL, and UV analysis. The presence of TiO2 and cobalt magnetite in the TCM core shell is confirmed by XRD analysis. The formation of a homogenous CoFe3O4shell on TiO2 spheres is confirmed by HR-TEM investigation. TiO2 nanoparticle has a rutile structure with an average crystallite size of about 57.44 and a TCM core-shell of about 64.62 nm. From UV and PL studies, it was found that the core shell absorbs the visible range of the electromagnetic spectrum, which improves the effective separation between photo carriers. This study focused on several factors that influence metal ion adsorption, including initial concentrations, adsorbent dose, pH, and contact time. The TCM nanocomposite successfully separated the heavy metal ion Pb(II) from aqueous solutions, and the model predictions exactly matched the experimental results. For TCM material, the maximum adsorption efficiency for Pb(II) was 33.09 mg/g. The photocatalytic performance of TiO2 and TCM is about 12% and 91% after 60 min for MB dye degradation. It was found that TiO2@CoFe3O4 core-shell nanoparticles perform better as photo catalysts than pure TiO2 and CoFe3O4due to their high efficiency and reusability. Furthermore, the analysis revealed that heavy metal adsorption from aqueous solutions could be reused over seven cycles with no adsorption capacity modification.

6.
Molecules ; 26(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919832

RESUMO

Magnetite zinc oxide (MZ) (Fe3O4/ZnO) with different ratios of reduced graphene oxide (rGO) was synthesized using the solid-state method. The structural and optical properties of the nanocomposites were analyzed using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis/DRS), and photoluminescence (PL) spectrophotometry. In particular, the analyses show higher photocatalytic movement for crystalline nanocomposite (MZG) than MZ and ZnO nanoparticles. The photocatalytic degradation of methylene blue (MB) with crystalline ZnO for 1.5 h under visible light was 12%. By contrast, the photocatalytic activity for MZG was more than 98.5%. The superior photocatalytic activity of the crystalline nanocomposite was detected to be due to the synergistic effect between magnetite and zinc oxide in the presence of reduced graphene oxide. Moreover, the fabricated nanocomposite had high electron-hole stability. The crystalline nanocomposite was stable when the material was used several times.

7.
RSC Adv ; 10(39): 23417-23430, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35520349

RESUMO

A new hybrid mesoporous nanocomposite (CMCM-48) based on chitosan and silica MCM-48 was considered as a potential adsorbent for removing phenol from aqueous solutions (toxic liquid waste) in a batch process. The new composite adsorbent was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and nitrogen adsorption-desorption isotherms. The adsorption isotherm studies were analyzed using linear and nonlinear Langmuir, Freundlich and Dubinin-Radushkevich models for the optimum conditions when the initial phenol concentration, pH, adsorption temperature and time were 10-500 mg L-1, 3-10, 25.5 °C and 300 min, respectively. It was revealed that the experimental results agree well with the Dubinin-Radushkevich model, i.e. the correlation coefficient R 2 was 0.983085. The adsorption kinetics was modeled with linear and nonlinear pseudo-first-order, pseudo-second-order and intra particle diffusion kinetic models. The pseudo-second-order model was the best for describing the adsorption process with a correlation coefficient R 2 = 0.99925. The stability of the equilibrium data was studied for a phenol sorbent with a maximum adsorption capacity of 149.25 mg g-1. The results verified that the synthesized CMCM-48 was an efficient adsorbent for removing phenol from aqueous solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...