Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970360

RESUMO

Salmonella enterica (S. enterica) is the most common food and waterborne pathogen worldwide. The growing trend of antibiotic-resistant S. enterica poses severe healthcare threats. As an alternative antimicrobial agent, bacteriophage-encoded endolysins (endolysin) are a potential agent in controlling S. enterica infection. Endolysins are enzymes that particularly target the peptidoglycan layer of bacterial cells, leading to their rupture and destruction. However, the application of bacteriophage-encoded endolysin against Gram-negative bacteria is limited due to the presence of the outer membrane in the cell wall, which hinders the permeation of externally applied endolysins. This study aimed the prokaryotic expression system to produce the recombinant endolysin ENDO-1252, encoded by the Salmonella bacteriophage-1252 associated with S. Enteritidis. Subsequently, ENDO-1252 had strong lytic activity not only against S. Enteritidis but also against S. Typhimurium. In addition, ENDO-1252 showed optimal thermostability and lytic activity at 25°C with a pH of 7.0. In combination with 0.1 mM EDTA, the effect of 120 µg of ENDO-1252 for 6 hours exhibited the highest lytic activity, resulting in a reduction of 1.15 log or 92.87% on S. Enteritidis. These findings suggest that ENDO-1252 can be used as a potential and innovative antibacterial agent for controlling the growth of S. Enteritidis.

2.
Molecules ; 29(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542999

RESUMO

The incidence of gastrointestinal illness attributable to Salmonella enterica serovar Typhimurium (ST) remains a concern for public health worldwide, as it can progress into systemic infections mediated by the type-three secretion system (T3SS), which allows for adherence and invasion to intestinal epithelial cells. The current study evaluates the ability of gallic acid (GA), protocatechuic acid (PA), and vanillic acid (VA) to impair the adhesion and invasion abilities of ST to a human epithelial (INT-407) cell monolayer while also assessing their cytotoxicity. GA, PA, and VA inhibited detectable ST growth at specific concentrations but showed cytotoxicity against INT-407 cells (>20% reduction in viability) after 3 h of treatments. Adjusting the pH of the solutions had a neutralizing effect on cytotoxicity, though it did reduce their antimicrobial potency. Adhesion of ST was reduced significantly when the cells were treated with 4.0 mg/mL of VA, whereas invasion was reduced in all treatments, with GA requiring the lowest concentration (0.5 mg/mL). Relative gene expression of virulence genes after treatment with GA showed downregulation in the T3SS regulator and effector hilA and sipA, respectively. These findings suggest further use of phenolic acids in reducing the activity of key virulence factors critical during ST infection.


Assuntos
Intestinos , Salmonella typhimurium , Humanos , Células Epiteliais/metabolismo , Fatores de Virulência/genética , Virulência , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
Front Microbiol ; 14: 1240458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637118

RESUMO

Implementation of organic/pasture farming practices has been increasing in the USA regardless of official certification. These practices have created an increasingly growing demand for marketing safe products which are produced through these systems. Products from these farming systems have been reported to be at greater risk of transmitting foodborne pathogens because of current trends in their practices. Salmonella enterica (SE) is a ubiquitous foodborne pathogen that remains a public health issue given its prevalence in various food products, but also in the environment and as part of the microbial flora of many domestic animals. Monitoring antibiotic resistance and identifying potential sources contamination are increasingly important given the growing trend of organic/pasture markets. This study aimed to quantify prevalence of SE at the pre- and post-harvest levels of various integrated farms and sites in Maryland-Washington D.C. area, as well as identify the most prevalent serovars and antibiotic resistance patterns. Samples from various elements within the farm environment were collected and screened for SE through culture and molecular techniques, which served to identify and serotype SE, using species and serovar-specific primers, while antibiotic resistance was evaluated using an antibiogram assay. Results showed a prevalence of 7.80% of SE pre-harvest and 1.91% post-harvest. These results also showed the main sources of contamination to be soil (2.17%), grass (1.28%), feces (1.42%) and unprocessed produce (1.48%). The most commonly identified serovar was Typhimurium (11.32%) at the pre-harvest level, while the only identified serovar from post-harvest samples was Montevideo (4.35%). With respect to antibiotic resistance, out of the 13 clinically relevant antibiotics tested, gentamycin and kanamycin were the most effective, demonstrating 78.93 and 76.40% of isolates, respectively, to be susceptible. However, ampicillin, amoxicillin and cephradine had the lowest number of susceptible isolates with them being 10.95, 12.36, and 9.83%, respectively. These results help inform farms striving to implement organic practices on how to produce safer products by recognizing areas that pose greater risks as potential sources of contamination, in addition to identifying serotypes of interest, while also showcasing the current state of antibiotic efficacy and how this can influence antibiotic resistance trends in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...