Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 97(3): 1101-1104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38189754

RESUMO

Alzheimer's disease is a multi-factorial disease that disrupts many aspects of human behavior. In this comment, we highlight the work by Koulousakis et al. published in a recent issue of the Journal of Alzheimer's Disease. In this study, the authors tested the therapeutic potential of the neuropeptide oxytocin in a pre-clinical model of Alzheimer's disease and found positive behavioral outcomes on memory assessments. We discuss these findings in the context of oxytocin research in the field of Alzheimer's disease and the literature regarding oxytocin-based therapeutics, including administration protocols and potential underlying cellular and molecular mechanisms.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Ocitocina/uso terapêutico , Peptídeos beta-Amiloides , Cognição
2.
iScience ; 26(4): 106545, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37128547

RESUMO

Alzheimer's disease (AD) is characterized by neurodegeneration, memory loss, and social withdrawal. Brain inflammation has emerged as a key pathogenic mechanism in AD. We hypothesized that oxytocin, a pro-social hypothalamic neuropeptide with anti-inflammatory properties, could have therapeutic actions in AD. Here, we investigated oxytocin expression in experimental models of AD, and evaluated the therapeutic potential of treatment with oxytocin. Amyloid-ß peptide oligomers (AßOs) reduced oxytocin expression in vitro and in vivo, and treatment with oxytocin prevented microglial activation induced by AßOs in purified microglial cultures. Treatment of aged APP/PS1 mice, a mouse model of AD, with intranasal oxytocin attenuated microglial activation and favored deposition of Aß in dense core plaques, a potentially neuroprotective mechanism. Remarkably, treatment with oxytocin alleviated social and non-social memory impairments in aged APP/PS1 mice. Our findings point to oxytocin as a potential therapeutic target to reduce brain inflammation and correct memory deficits in AD.

3.
Mol Ther ; 31(2): 409-419, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36369741

RESUMO

The accumulation of soluble oligomers of the amyloid-ß peptide (AßOs) in the brain has been implicated in synapse failure and memory impairment in Alzheimer's disease. Here, we initially show that treatment with NUsc1, a single-chain variable-fragment antibody (scFv) that selectively targets a subpopulation of AßOs and shows minimal reactivity to Aß monomers and fibrils, prevents the inhibition of long-term potentiation in hippocampal slices and memory impairment induced by AßOs in mice. As a therapeutic approach for intracerebral antibody delivery, we developed an adeno-associated virus vector to drive neuronal expression of NUsc1 (AAV-NUsc1) within the brain. Transduction by AAV-NUsc1 induced NUsc1 expression and secretion in adult human brain slices and inhibited AßO binding to neurons and AßO-induced loss of dendritic spines in primary rat hippocampal cultures. Treatment of mice with AAV-NUsc1 prevented memory impairment induced by AßOs and, remarkably, reversed memory deficits in aged APPswe/PS1ΔE9 Alzheimer's disease model mice. These results support the feasibility of immunotherapy using viral vector-mediated gene delivery of NUsc1 or other AßO-specific single-chain antibodies as a potential therapeutic approach in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Anticorpos de Cadeia Única , Camundongos , Ratos , Humanos , Animais , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Sinapses/metabolismo , Neurônios/metabolismo , Transtornos da Memória/genética , Transtornos da Memória/terapia
4.
J Neurochem ; 153(1): 10-32, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31630412

RESUMO

Perception of our environment entirely depends on the close interaction between the central and peripheral nervous system. In order to communicate each other, both systems must develop in parallel and in coordination. During development, axonal projections from the CNS as well as the PNS must extend over large distances to reach their appropriate target cells. To do so, they read and follow a series of axon guidance molecules. Interestingly, while these molecules play critical roles in guiding developing axons, they have also been shown to be critical in other major neurodevelopmental processes, such as the migration of cortical progenitors. Currently, a major hurdle for brain repair after injury or neurodegeneration is the absence of axonal regeneration in the mammalian CNS. By contrasts, PNS axons can regenerate. Many hypotheses have been put forward to explain this paradox but recent studies suggest that hacking neurodevelopmental mechanisms may be the key to promote CNS regeneration. Here we provide a seminar report written by trainees attending the second Flagship school held in Alpbach, Austria in September 2018 organized by the International Society for Neurochemistry (ISN) together with the Journal of Neurochemistry (JCN). This advanced school has brought together leaders in the fields of neurodevelopment and regeneration in order to discuss major keystones and future challenges in these respective fields.


Assuntos
Orientação de Axônios/fisiologia , Axônios/fisiologia , Encéfalo/ultraestrutura , Animais , Axônios/ultraestrutura , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Humanos , Regeneração Nervosa , Quiasma Óptico/crescimento & desenvolvimento , Sistema Nervoso Periférico/crescimento & desenvolvimento , Sistema Nervoso Periférico/fisiologia , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/fisiologia , Medula Espinal/ultraestrutura
5.
Mol Neurobiol ; 57(3): 1473-1483, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31760608

RESUMO

Alzheimer's disease (AD) is the main cause of dementia in the elderly. Although activation of brain insulin signaling has been shown to be neuroprotective, to preserve memory in AD models, and appears beneficial in patients, the role of insulin-like growth factor 1 (IGF1) remains incompletely understood. We found reduced active/inactive IGF1 ratio and increased IGF1R expression in postmortem hippocampal tissue from AD patients, suggesting impaired brain IGF1 signaling in AD. Active/inactive IGF-1 ratio was also reduced in the brains of mouse models of AD. We next investigated the possible protective role of IGF1 in AD models. We used a recombinant adenoviral vector, RAd-IGF1, to drive the expression of IGF1 in primary hippocampal neuronal cultures prior to exposure to AßOs, toxins that accumulate in AD brains and have been implicated in early synapse dysfunction and memory impairment. Cultures transduced with RAd-IGF1 showed decreased binding of AßOs to neurons and were protected against AßO-induced neuronal oxidative stress and loss of dendritic spines. Significantly, in vivo transduction with RAd-IGF1 blocked memory impairment caused by intracerebroventricular (i.c.v.) infusion of AßOs in mice. Our results demonstrate altered active IGF1 and IGF1R levels in AD hippocampi, and suggest that boosting brain expression of IGF1 may comprise an approach to prevent neuronal damage and memory loss in AD.


Assuntos
Adenoviridae/patogenicidade , Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Transtornos da Memória/prevenção & controle , Adenoviridae/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/virologia , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Memória/fisiologia , Transtornos da Memória/metabolismo , Camundongos , Neurônios/metabolismo , Sinapses/metabolismo
6.
J Neurosci Methods ; 307: 203-209, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859877

RESUMO

BACKGROUND: Slice cultures have been prepared from several organs. With respect to the brain, advantages of slice cultures over dissociated cell cultures include maintenance of the cytoarchitecture and neuronal connectivity. Slice cultures from adult human brain have been reported and constitute a promising method to study neurological diseases. Despite this potential, few studies have characterized in detail cell survival and function along time in short-term, free-floating cultures. NEW METHOD: We used tissue from adult human brain cortex from patients undergoing temporal lobectomy to prepare 200 µm-thick slices. Along the period in culture, we evaluated neuronal survival, histological modifications, and neurotransmitter release. The toxicity of Alzheimer's-associated Aß oligomers (AßOs) to cultured slices was also analyzed. RESULTS: Neurons in human brain slices remain viable and neurochemically active for at least four days in vitro, which allowed detection of binding of AßOs. We further found that slices exposed to AßOs presented elevated levels of hyperphosphorylated Tau, a hallmark of Alzheimer's disease. COMPARISON WITH EXISTING METHOD(S): Although slice cultures from adult human brain have been previously prepared, this is the first report to analyze cell viability and neuronal activity in short-term free-floating cultures as a function of days in vitro. CONCLUSIONS: Once surgical tissue is available, the current protocol is easy to perform and produces functional slices from adult human brain. These slice cultures may represent a preferred model for translational studies of neurodegenerative disorders when long term culturing in not required, as in investigations on AßO neurotoxicity.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Adulto , Análise de Variância , Epilepsia do Lobo Temporal/patologia , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Fosfopiruvato Hidratase/metabolismo , Cloreto de Potássio/farmacologia , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...