Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 118(28): 5279-88, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24949666

RESUMO

Quantum chemical methods were used to investigate the OH initiated atmospheric degradation of methanimine, CH2═NH, the major primary product in the atmospheric photo-oxidation of methylamine, CH3NH2. Energies of stationary points on potential energy surfaces of reaction were calculated using multireference perturbation theory and coupled cluster theory. The results show that hydrogen abstraction dominates over the addition route in the CH2═NH + OH reaction, and that the major primary product is HCN, while HNC and CHONH2 are minor primary products. HNC is found to react with OH exclusively via addition to the carbon atom followed by O-H scission leading to HNCO; N2O is not a product in the atmospheric photo-oxidation of HNC. Additional G4 calculations of the CH2═NH + O3 reaction show that this is too slow to be of importance at atmospheric conditions. Rate coefficients for the CH2═NH + OH and HNC + OH reactions were calculated as a function of temperature and pressure using a master equation model based on the coupled cluster theory results. The rate coefficients for OH reaction with CH2═NH and HNC at 1000 mbar and room temperature are calculated to be 3.0 × 10(-12) and 1.3 × 10(-11) cm(3) molecule(-1) s(-1), respectively. The atmospheric fate of CH2═NH is discussed and a gas phase photo-oxidation mechanism is presented.

2.
Anal Chim Acta ; 761: 109-16, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23312321

RESUMO

Three primary nerve agent degradation products (ethyl-, isopropyl- and pinacolyl methylphosphonic acid) have been determined in water samples using on-line solid phase extraction-liquid chromatography and mass spectrometry (SPE-LC-MS) with electrospray ionisation. Porous graphitic carbon was employed for analyte enrichment followed by hydrophilic interaction chromatography. Diethylphosphate was applied as internal standard for quantitative determination of the alkyl methylphosphonic acids (AMPAs). By treating the samples with strong cation-exhange columns on Ba, Ag and H form, the major inorganic anions in water were removed by precipitation prior to the SPE-LC-MS determination. The AMPAs could be determined in tap water with limits of detection of 0.01-0.07 µg L(-1) with the [M-H](-) ions extracted at an accuracy of ±5 mDa. The within and between assay precisions at analyte concentrations of 5 µg L(-1) were 2-3%, and 5-9% relative standard deviation, respectively. The developed method was employed for determination of the AMPAs in three natural waters and a simulated waste water sample, spiked at 5 µg L(-1). Recoveries of ethyl-, isopropyl- and pinacolyl methylphosphonic acid were 80-91%, 92-103% and 99-106%, respectively, proving the applicability of the technique for natural waters of various origins.


Assuntos
Substâncias para a Guerra Química/análise , Organofosfonatos/análise , Compostos Organofosforados/análise , Extração em Fase Sólida/métodos , Soman/análogos & derivados , Poluentes Químicos da Água/análise , Substâncias para a Guerra Química/isolamento & purificação , Cromatografia Líquida/instrumentação , Cromatografia Líquida/métodos , Desenho de Equipamento , Água Doce/análise , Grafite/química , Limite de Detecção , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Organofosfonatos/isolamento & purificação , Compostos Organofosforados/isolamento & purificação , Porosidade , Extração em Fase Sólida/instrumentação , Soman/análise , Soman/isolamento & purificação , Água/análise , Poluentes Químicos da Água/isolamento & purificação
3.
J Phys Chem A ; 113(16): 4457-67, 2009 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-19371118

RESUMO

The potential energy hypersurface (PES) of the reaction OH + OH (+M) --> H(2)O(2) (+M) has been investigated at the CASPT2/aug-cc-pVDZ and CASPT2/aug-cc-pVTZ levels of theory. The PES is characterized by a barrier below the energy of the reactants and a hydrogen-bonded adduct formed by the OH radicals. On the basis of the potential energy hypersurface obtained, the high-pressure limiting rate coefficient (k(infinity)) of the reaction was calculated using variable reaction coordinate transition-state theory, classical trajectory simulations, and a two-transition-state model. Over the temperature range of 200-3000 K, k(infinity)(T) = 9.3 x 10(-9)T(-1.040) exp(3.5/T) + 1.13 x 10(-12)T(0.303) exp(84/T) cm(3) molecule(-1) s(-1) is reported. Available experimental data on the pressure dependence of the reaction with He and Ar as bath gases were analyzed using a two-dimensional master equation. Over the temperature range of 200-3000 K, the following low-pressure limiting rate coefficient (k(0)) and center broadening factor (F(cent)) were obtained for He as the bath gas: k(0)(T) = 4.4 x 10(-20)T(-4.30) exp(-340/T) cm(6) molecule(-2) s(-1) and F(cent) = 0.54. For the dissociation of H(2)O(2) in Ar, the following values are reported over the temperature range of 500-3000 K: k(0)(T) = 1.4 x 10(8)T(-4.57) exp(-26322/T) cm(3) molecule(-1) s(-1) and F(cent) = 0.55. The calculations describe all experimental data well, except the observations at 210 K for the reaction with He as the bath gas.

4.
J Phys Chem A ; 112(23): 5085-95, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18491883

RESUMO

The reactions H + O2 (+M) --> HO2 (+M) and H + OH (+M) --> H2O (+M) have been studied using high-level quantum chemistry methods. On the basis of potential energy hypersurfaces obtained at the CASPT2/aug-cc-pVTZ level of theory, high-pressure limiting rate coefficients have been calculated using variable reaction coordinate transition state theory. Over the temperature range 300-3000 K, the following expressions were obtained in units of cm(3) molecule(-1) s(-1): k(infinity)(H + O2) = (25T(-0.367) + (7.5 x 10(-2)) T(0.702)) x 10(-11) and k(infinity)(H + OH) = (4.17 x 10(-11)) T(0.234)exp (57.5/T). Available experimental data on the pressure dependence of the reactions were analyzed using a two-dimensional master equation. The following low-pressure limiting rate coefficients were obtained over the temperature range 300-3000 K in units of cm(6) molecule(-2) s(-1): k0(H + O2 + Ar) = (9.1x10(-29)) T(-1.404)exp (-134/T), k0(H + O2 + N2) = (2.0x10(-27)) T(-1.73)exp (-270/T), k0(H + OH + Ar) = (8.6x10(-28)) T(-1.527)exp (-185/T), and k0(H + OH + N2) = (1.25x10(-26)) T(-1.81)exp (-251/T). For the H + O2 reaction system, F(cent)(Ar) = 0.67 and F(cent)(N2) = 0.72 were obtained as center broadening factors, whereas F(cent)(Ar) = 0.72 and F(cent)(N2) = 0.73 were obtained for the H + OH reaction system. The calculations provide a good description of most of the experimental data, except the room temperature measurements on the H + OH (+M) --> H2O (+M) reaction.

5.
J Phys Chem A ; 112(1): 9-22, 2008 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-18069803

RESUMO

The elementary vapor-phase reaction between Cl atoms and HCHO has been studied by ab initio methods. Calculations at the MP2, MP3, MP4(SDTQ), CCSD, CCSD(T), and MRD-CI levels of theory show that the reaction is characterized by a low electronic barrier; excluding the effects of spin-orbit splitting in Cl, our best estimate at the MRD-CI/aug-cc-pVTZ//RHF-RCCSD(T)/aug-cc-pVTZ level of theory predicts a Born-Oppenheimer barrier height of 0.7 kJ mol-1. The energies of the lowest six electronic states as resulting from MRD-CI calculations are presented at discrete points along the reaction path, and two avoided crossings are found in the transition state region. The spin-orbit splitting in Cl is also calculated along the reaction path; it is not negligible in the transition state region and is found to increase the barrier by only 1.4 kJ mol-1 at the RCCSD(T)/aug-cc-pVTZ transition state geometry. The minimum energy path of the reaction connects an energetically weakly stabilized adduct on the flat potential surface on the reactant side and an energetically strongly stabilized postreaction adduct. The reaction rate coefficient and the kinetic isotope effects were calculated using improved canonical variational theory with small curvature tunneling (ICVT/SCT), and the results were compared to experimental data. The experimental reaction rate coefficient is reproduced within its uncertainty limits by variational transition state theory with interpolated single-point energy corrections (ISPE) at the MP4(SDTQ) level of theory and by conventional transition state theory with interpolated optimized energies (IOE) at the MRD-CI//RCCSD(T) level of theory and interpolated optimized geometries at the RCCSD(T) level of theory on an MP2/aug-cc-pVTZ potential energy surface when employing scaled vibrational frequencies.


Assuntos
Cloro/química , Formaldeído/química , Teoria Quântica , Cinética
6.
J Phys Chem A ; 110(1): 141-52, 2006 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-16392849

RESUMO

Relative rate experiments have been carried out for three isotopologues of chloromethane and their reactions with Cl atoms and OH radicals. The OH and Cl reaction rates of CH2DCl and CHD2Cl were measured by long-path FTIR spectroscopy relative to CH3Cl at 298+/-2 K and 1013+/-10 hPa in purified air. The FTIR spectra were fitted using a nonlinear least squares spectral fitting method including measured high-resolution infrared spectra as references. The relative reaction rates defined by alpha=klight/kheavy were determined to be kOH+CH3Cl/kOH+CH2DCl=1.41+/-0.05, kOH+CH3Cl/kOH+CHD2Cl=2.03+/-0.05, kCl+CH3Cl/kCl+CH2DCl=1.42+/-0.04, and kCl+CH3Cl/kCl+CHD2Cl=2.27+/-0.04. The carbon-13 and deuterium kinetic isotope effects in the OH and Cl reactions of CH3Cl were investigated further using variational transition state theory, and the results were compared to similar calculations performed for the CH4+OH/Cl reaction systems. The calculations show that the order of magnitude difference for the carbon-13 kinetic isotope effect in the OH reaction of CH3Cl compared to CH4 reported by Gola et al. (Atmos. Chem. Phys. 2005, 5, 2395) can be explained by the lower barrier to internal rotation of the OH radical in the transition state of the CH4+OH reaction than in the CH3Cl+OH reaction. The deuterium kinetic isotope effects can be explained in terms of combined variational effects and tunneling.

7.
Environ Sci Technol ; 39(22): 8708-11, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16323766

RESUMO

The UV-vis and infrared absorption cross sections of perfluoro-2-methyl-3-pentanone (CF3CF2C(O)CF(CF3)2, 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-penta none), has been obtained, and a photolysis study was carried out under natural sunlight conditions in the European simulation chamber, Valencia, Spain (EUPHORE). The photolysis loss rate, J(photol), equaled (6.4 +/- 0.3) x 10(-6) s(-1) in the period of 10-14 GMT, July 14, 2003 in Valencia (0.5 W, 39.5 N) and corresponded to an effective quantum yield of photolysis of 0.043 +/- 0.011 over the wavelength range of 290-400 nm; the error limits correspond to 2sigma from the statistical analyses. The atmospheric lifetime of CF3CF2C(O)CF(CF3)2 is estimated to be around 1 week, and the global warming potential of the compound is negligible.


Assuntos
Retardadores de Chama/metabolismo , Fluorocarbonos/metabolismo , Pentanonas/metabolismo , Fotólise , Luz Solar
8.
J Phys Chem A ; 109(2): 337-46, 2005 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16833352

RESUMO

The kinetics of the OH radical and Cl atom reactions with nine fluorinated ethers have been studied by the relative rate method at 298 K and 1013 hPa using gas chromatography-mass spectroscopy (GC-MS) detection: k(OH + CH3CH2OCF3) = (1.55 +/- 0.25) x 10(-13), k(OH + CF3CH2OCH3) = (5.7 +/- 0.8) x 10(-13),k(OH + CF3CH2OCHF2) = (9.1 +/- 1.1) x 10(-15), k(OH + CF3CHFOCHF2) = (6.5 +/- 0.8) x 10(-15), k(OH + CHF2CHFOCF3) = (6.8 +/- 1.1) x 10(-15), k(OH + CF3CHFOCF3) < 1 x 10(-15), k(OH + CF3CHFCF2OCHF2) = (1.69 +/- 0.26) x 10(-14), k(OH + CF3CHFCF2OCH2CH3) = (1.47 +/- 0.13) x 10(-13), k(OH + CF3CF2CF2OCHFCF3) < 1 x 10(-15), k(Cl + CH3CH2OCF3) = (2.2 +/- 0.8) x 10(-12), k(Cl + CF3CH2OCH3) = (1.8 +/- 0.9) x 10(-11), k(Cl + CF3CH2OCHF2) = (1.5 +/- 0.4) x 10(-14), k(Cl + CF3CHFOCHF2) = (1.1 +/- 1.9) x 10(-15), k(Cl + CHF2CHFOCF3) = (1.2 +/- 2.0) x 10(-15), k(Cl + CF3CHFOCF3) < 3 x 10(-15), k(Cl + CF3CHFCF2OCHF2) < 6 x 10(-16), k(Cl + CF3CHFCF2OCH2CH3) = (3.1 +/- 1.1) x 10(-12), and k(Cl + CF3CF2CF2OCHFCF3) < 3 x 10(-15) cm3 molecule(-1) s(-1). The error limits include three standard deviations (3 sigma) from the statistical data analyses, as well as the errors in the rate coefficients of the reference compounds that are used. Infrared absorption cross sections and estimates of the trophospheric lifetimes and the global warming potentials of the fluorinated ethers are presented. The atmospheric degradation of the compounds is discussed.

9.
J Phys Chem A ; 109(16): 3652-62, 2005 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16839031

RESUMO

The infrared and ultraviolet-visible absorption cross sections, effective quantum yield of photolysis, and OH, Cl, and NO3 reaction rate coefficients of CHF2CHO are reported. Relative rate measurements at 298 +/- 2 K and 1013 +/- 10 hPa gave kOH = (1.8 +/- 0.4) x 10(-12) cm3 molecule(-1) s(-1) (propane as reference compound), kCl = (1.24 +/- 0.13) x 10(-11) cm3 molecule(-1) s(-1) (ethane as reference compound), and kNO3 = (5.9 +/- 1.7) x 10(-17) cm3 molecule(-1) s(-1) (trans-dichloroethene as reference compound). The photolysis of CHF2CHO has been investigated under pseudonatural tropospheric conditions in the European simulation chamber, Valencia, Spain (EUPHORE), and an effective quantum yield of photolysis equal to 0.30 +/- 0.05 over the wavelength range 290-500 nm has been extracted. The tropospheric lifetime of CHF2CHO is estimated to be around 1 day and is determined by photolysis. The observed photolysis rates of CH3CHO, CHF2CHO, and CF3CHO are discussed on the basis of results from quantum chemical calculations.


Assuntos
Físico-Química/métodos , Fotoquímica/métodos , Absorção , Etano/química , Dicloretos de Etileno/química , Raios Infravermelhos , Cinética , Propano/química , Teoria Quântica , Padrões de Referência , Espectrofotometria Infravermelho/métodos , Espectrofotometria Ultravioleta/métodos , Temperatura , Fatores de Tempo , Raios Ultravioleta
10.
Environ Sci Technol ; 38(21): 5567-76, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15575273

RESUMO

Infrared absorption cross-sections and OH and Cl reaction rate coefficients for four C4-hydrofluoroethers (CF3)2CHOCH3, CF3CH2OCH2CF3, CF3CF2CH2OCH3, and CHF2CF2CH2OCH3 are reported. Relative rate measurements at 298 K and 1013 hPa of OH and Cl reaction rate coefficients give k(OH+(CF3)2CHOCH3) = (1.27+/-0.13) x 10(-13), k(OH+CF3CH2OCH2CF3) = (1.51+/-0.24) x 10(-13), k(OH+CF3CF2CH2OCH3) = (6.42+/-0.33) x 10(-13), k(OH+CHF2CF2CH2OCH3) = (8.7 +/-0.5) x 10(-13), k(Cl+(CF3)2CHOCH3) = (8.4+/-1.3) x 10(-12), k(Cl+CF3CH2OCH2CF3) = (6.5+/-1.7) x 10(-13), k(Cl+CF3CF2CH2OCH3) = (4.0+/-0.8) x 10(-11), and k(Cl+CHF2CF2CH2OCH3) = (2.65+/-0.17) x 10(-11) cm3 molecule(-1) s(-1). The primary products of the OH and Cl reactions with the fluorinated ethers have been identified as esters, and OH and Cl reaction rate coefficients for one of these, CF3CH2OCHO, are reported: k(OH+CF3CH2OCHO) = (7.7+/-0.9) x 10(-14) and kCl+CF3CH2OCHO) = (6.3+/-1.9) x 10(-14) cm3 molecule(-1) s(-1) The rate coefficient for the Cl-atom reaction with CHF2CH2F is derived as k(Cl+CHF2CH2F) = (3.0+/-0.9) x 10(-14) cm3 molecule(-1) s(-1) at 298 K. The error limits include 3sigma from the statistical data analyses as well as the errors in the rate coefficients of the reference compounds employed. The tropospheric lifetimes of the hydrofluoroethers are estimated to be short tauOH((CF3)2CHOCH3) approximately 100 days, tauOH(CF3CH2OCH2CF3) approximately 80 days, tauOH(CF3CF2CH2OCH3) approximately 20 days, and tauOH(CHF2CF2CH2OCH3) approximately 14 days, and their global warming potentials are small compared to CFC-11.


Assuntos
Poluentes Atmosféricos/análise , Cloro/química , Radical Hidroxila/química , Raios Infravermelhos , Oxidantes/química , Absorção , Éteres/química , Cromatografia Gasosa-Espectrometria de Massas , Efeito Estufa , Hidrocarbonetos Fluorados/química , Cinética , Oxirredução , Fotólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...