Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 928: 172452, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615757

RESUMO

Greenhouse gas (GHG) fluxes from peatland soils are relatively well studied, whereas tree stem fluxes have received far less attention. Simultaneous year-long measurements of soil and tree stem GHG fluxes in northern peatland forests are scarce, as previous studies have primarily focused on the growing season. We determined the seasonal dynamics of tree stem and soil CH4, N2O and CO2 fluxes in a hemiboreal drained peatland forest. Gas samples for flux calculations were manually collected from chambers at different heights on Downy Birch (Betula pubescens) and Norway Spruce (Picea abies) trees (November 2020-December 2021) and analysed using gas chromatography. Environmental parameters were measured simultaneously with fluxes and xylem sap flow was recorded during the growing season. Birch stems played a greater role in the annual GHG dynamics than spruce stems. Birch stems were net annual CH4, N2O and CO2 sources, while spruce stems constituted a CH4 and CO2 source but a N2O sink. Soil was a net CO2 and N2O source, but a sink of CH4. Temporal dynamics of stem CH4 and N2O fluxes were driven by isolated emissions' peaks that contributed significantly to net annual fluxes. Stem CO2 efflux followed a seasonal trend coinciding with tree growth phenology. Stem CH4 dynamics were significantly affected by the changes between wetter and drier periods, while N2O was more influenced by short-term changes in soil hydrologic conditions. We showed that CH4 emitted from tree stems during the wetter period can offset nearly half of the soil sink capacity. We presented for the first time the relationship between tree stem GHG fluxes and sap flow in a peatland forest. The net CH4 flux was likely an aggregate of soil-derived and stem-produced CH4. A dominating soil source was more evident for stem N2O fluxes.


Assuntos
Betula , Monitoramento Ambiental , Florestas , Gases de Efeito Estufa , Metano , Solo , Gases de Efeito Estufa/análise , Solo/química , Metano/análise , Estações do Ano , Dióxido de Carbono/análise , Óxido Nitroso/análise , Picea , Caules de Planta , Poluentes Atmosféricos/análise
2.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298887

RESUMO

Aquaporin water channels (AQPs) constitute a large family of transmembrane proteins present throughout all kingdoms of life. They play key roles in the flux of water and many solutes across the membranes. The AQP diversity, protein features, and biological functions of silver birch are still unknown. A genome analysis of Betula pendula identified 33 putative genes encoding full-length AQP sequences (BpeAQPs). They are grouped into five subfamilies, representing ten plasma membrane intrinsic proteins (PIPs), eight tonoplast intrinsic proteins (TIPs), eight NOD26-like intrinsic proteins (NIPs), four X intrinsic proteins (XIPs), and three small basic intrinsic proteins (SIPs). The BpeAQP gene structure is conserved within each subfamily, with exon numbers ranging from one to five. The predictions of the aromatic/arginine selectivity filter (ar/R), Froger's positions, specificity-determining positions, and 2D and 3D biochemical properties indicate noticeable transport specificities to various non-aqueous substrates between members and/or subfamilies. Nevertheless, overall, the BpePIPs display mostly hydrophilic ar/R selective filter and lining-pore residues, whereas the BpeTIP, BpeNIP, BpeSIP, and BpeXIP subfamilies mostly contain hydrophobic permeation signatures. Transcriptional expression analyses indicate that 23 BpeAQP genes are transcribed, including five organ-related expressions. Surprisingly, no significant transcriptional expression is monitored in leaves in response to cold stress (6 °C), although interesting trends can be distinguished and will be discussed, notably in relation to the plasticity of this pioneer species, B. pendula. The current study presents the first detailed genome-wide analysis of the AQP gene family in a Betulaceae species, and our results lay a foundation for a better understanding of the specific functions of the BpeAQP genes in the responses of the silver birch trees to cold stress.


Assuntos
Aquaporinas/metabolismo , Betula/genética , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Família Multigênica/genética , Éxons/genética , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla/métodos , Interações Hidrofóbicas e Hidrofílicas , Filogenia , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Transcrição Gênica/genética
3.
Funct Plant Biol ; 48(5): 483-492, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33453751

RESUMO

It is widely acknowledged that many plant species can keep stomata open during night. We examined how nocturnal stomatal conductance differs among potted saplings of nine temperate tree species from diverse native habitats in wet and dry soil conditions, and how it affects plant predawn water status. Nocturnal stomatal conductance in dry soil conditions was low in all the species (with a maximum value of 14.6 mmol m-2 s-1); in wet conditions, it was the highest in Populus tremula L., a fast-growing and anisohydric pioneer species, and the lowest in Quercus robur L., a late-successional and isohydric species. Relatively high nocturnal stomatal conductance in wet conditions in P. tremula compared with the other species resulted in the highest difference in water potential values between the leaves and soil at predawn. As drought progressed, different species tended to keep stomata almost closed at night, and the observed differences between anisohydric and isohydric species disappeared. At an ample soil water supply, nocturnal stomatal behaviour was species dependent and varied according to both the water-use and the life strategies of the species. Keeping that in mind, one should therefore be careful when using predawn leaf water potential as a proxy for soil water potential, sampling different species.


Assuntos
Solo , Árvores , Folhas de Planta/química , Transpiração Vegetal , Água/análise
4.
Plant Physiol Biochem ; 153: 92-105, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32485617

RESUMO

High relative air humidity (RH ≥ 85%) is frequent in controlled environments, and not uncommon in nature. In this review, we examine the high RH effects on plants with a special focus on stomatal characters. All aspects of stomatal physiology are attenuated by elevated RH during leaf expansion (long-term) in C3 species. These include impaired opening and closing response, as well as weak diel oscillations. Consequently, the high RH-grown plants are not only vulnerable to biotic and abiotic stress, but also undergo a deregulation between CO2 uptake and water loss. Stomatal behavior of a single leaf is determined by the local microclimate during expansion, and may be different than the remaining leaves of the same plant. No effect of high RH is apparent in C4 and CAM species, while the same is expected for species with hydropassive stomatal closure. Formation of bigger stomata with larger pores is a universal response to high RH during leaf expansion, whereas the effect on stomatal density appears to be species- and leaf side-specific. Compelling evidence suggests that ABA mediates the high RH-induced stomatal malfunction, as well as the stomatal size increase. Although high RH stimulates leaf ethylene evolution, it remains elusive whether or not this contributes to stomatal malfunction. Most species lose stomatal function following mid-term (4-7 d) exposure to high RH following leaf expansion. Consequently, the regulatory role of ambient humidity on stomatal functionality is not limited to the period of leaf expansion, but holds throughout the leaf life span.


Assuntos
Umidade , Estômatos de Plantas/fisiologia , Transpiração Vegetal , Ácido Abscísico , Folhas de Planta/fisiologia , Água
5.
Plant Sci ; 290: 110299, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31779902

RESUMO

Forest understory species have to acclimatize to highly heterogeneous light conditions inside forest canopies in order to utilize available resources efficiently. Light sensitivity and response speed of hydraulic conductance (KL) of common hazel (Corylus avellana L.) to fast changes in irradiance was studied in leaves from three different growth light conditions-sun-exposed, moderate shade, and deep shade. The KL of sun-exposed leaves was approximately 3-fold higher when compared to deep-shade leaves, indicating a strong dependence of leaf hydraulic capacity on light conditions. The KL of sun-exposed leaves increased by a factor of nearly four from minimal values recorded in darkness to maximal values in high light compared to deep-shade leaves. Reaction speed of KL to reach maximum values in response to light was nearly five times higher for sun-exposed vs deep-shade leaves. Plasticity indices of KL for sun-exposed and deep-shade leaves were 0.44 and 0.27, respectively. Higher light sensitivity enables a faster and more plastic response of KL to variable light conditions in sun leaves and enhances the ability of plants to maximize resource utilization under more beneficial environmental conditions.


Assuntos
Adaptação Fisiológica , Corylus/fisiologia , Folhas de Planta/fisiologia , Luz Solar , Transporte Biológico/fisiologia , Transporte Biológico/efeitos da radiação , Corylus/efeitos da radiação , Folhas de Planta/efeitos da radiação
6.
J Plant Res ; 132(3): 369-381, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30989500

RESUMO

Climate change scenarios predict an increase in air temperature and precipitation in northern temperate regions of Europe by the end of the century. Increasing atmospheric humidity inevitably resulting from more frequent rainfall events reduces water flux through vegetation, influencing plants' structure and functioning. We investigated the extent to which artificially elevated air humidity affects the anatomical structure of the vascular system and hydraulic conductance of leaves in Betula pendula. A field experiment was carried out at the Free Air Humidity Manipulation (FAHM) site with a mean increase in relative air humidity (RH) by 7% over the ambient level across the growing period. Leaf hydraulic properties were determined with a high-pressure flow meter; changes in leaf anatomical structure were studied by means of conventional light microscopy and digital image processing techniques. Leaf development under elevated RH reduced leaf-blade hydraulic conductance and petiole conductivity and had a weak effect on leaf vascular traits (vessel diameters decreased), but had no significant influence on stomatal traits or tissue proportions in laminae. Both hydraulic traits and relevant anatomical characteristics demonstrated pronounced trends with respect to leaf location in the canopy-they increased from crown base to top. Stomatal traits were positively correlated with several petiole and leaf midrib vascular traits. The reduction in leaf hydraulic conductance in response to increasing air humidity is primarily attributable to reduced vessel size, while higher hydraulic efficiency of upper-crown foliage is associated with vertical trends in the size of vascular bundles, vessel number and vein density. Although we observed co-ordinated adjustment of vascular and hydraulic traits, the reduced leaf hydraulic efficiency could lead to an imbalance between hydraulic supply and transpiration demand under the extreme environmental conditions likely to become more frequent in light of global climate change.


Assuntos
Betula/anatomia & histologia , Folhas de Planta/anatomia & histologia , Transpiração Vegetal/fisiologia , Árvores/anatomia & histologia , Betula/fisiologia , Florestas , Umidade , Folhas de Planta/fisiologia , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/fisiologia , Árvores/fisiologia , Água/metabolismo
7.
J Plant Physiol ; 219: 28-36, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28985513

RESUMO

Climate models predict greater increases in the frequency than in the amount of precipitation and a consequent rise in atmospheric humidity at high latitudes by the end of the century. We investigated the responses of hydraulic and relevant anatomical traits of xylem to elevated relative humidity of air on a 1-yr-old coppice of hybrid aspen (Populus×wettsteinii) growing in the experimental stand at the Free Air Humidity Manipulation site in Eastern Estonia. The hydraulic conductivity of stems was measured with a high pressure flow meter; artificial cavitation in the stem segments was induced by the air injection method. Specific conductivity of xylem decreased from 4.42 in the control to 3.94kgm-1s-1MPa-1 in the humidification treatment, while the trend was well correlated with increasing wood density. Humidified trees exhibited smaller leaf area at the same xylem cross-sectional area, resulting in 34% higher average Huber values compared to the control. Control and humidity-treated trees differed by neither native embolism level nor susceptibility to dehydration-induced cavitation. Increasing atmospheric humidity reduces the hydraulic efficiency of hybrid aspen trees expressed on a xylem area basis and causes substantial changes in resource allocation between photosynthetic and water transport tissues. This climate trend does not influence stem vulnerability to cavitation.


Assuntos
Clima , Brotos de Planta/fisiologia , Caules de Planta/fisiologia , Populus/fisiologia , Xilema/fisiologia , Mudança Climática , Umidade , Árvores/fisiologia
8.
Tree Physiol ; 37(9): 1218-1228, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28938056

RESUMO

Leaves have to acclimatize to heterogeneous radiation fields inside forest canopies in order to efficiently exploit diverse light conditions. Short-term effects of light quality on photosynthetic gas exchange, leaf water use and hydraulic traits were studied on Betula pendula Roth shoots cut from upper and lower thirds of the canopy of 39- to 35-year-old trees growing in natural forest stand, and illuminated with white, red or blue light in the laboratory. Photosynthetic machinery of the leaves developed in different spectral conditions acclimated differently with respect to incident light spectrum: the stimulating effect of complete visible spectrum (white light) on net photosynthesis is more pronounced in upper-canopy layers. Upper-canopy leaves exhibit less water saving behaviour, which may be beneficial for the fast-growing pioneer species on a daily basis. Lower-canopy leaves have lower stomatal conductance resulting in more efficient water use. Spectral gradients existing within natural forest stands represent signals for the fine-tuning of stomatal conductance and tree water relations to afford lavish water use in sun foliage and enhance leaf water-use efficiency in shade foliage sustaining greater hydraulic limitations. Higher sensitivity of hydraulic conductance of shade leaves to blue light probably contributes to the efficient use of short duration sunflecks by lower-canopy leaves.


Assuntos
Betula/efeitos da radiação , Luz , Folhas de Planta/efeitos da radiação , Fotossíntese , Árvores/efeitos da radiação
9.
J Plant Physiol ; 213: 148-156, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28384532

RESUMO

Physiological processes taking place in plants are subject to diverse circadian patterns but some of them are poorly documented in natural conditions. The daily dynamics of physico-chemical properties of xylem sap and their covariation with tree hydraulic traits were investigated in hybrid aspen (Populus tremula L.×P. tremuloides Michx) in field conditions in order to clarify which environmental drivers govern the daily variation in these parameters. K+ concentration ([K+]), electrical conductivity (σsap), osmolality (Osm) and pH of the xylem sap, as well as branch hydraulic traits, were measured in the field over 24-h cycles. All studied xylem sap properties and hydraulic characteristics including whole-branch (Kwb), leaf blade (Klb) and petiole hydraulic conductances (KP) showed clear daily dynamics. Air temperature (TA) and photosynthetic photon flux density (PPFD), but also water vapour pressure deficit (VPD) and relative humidity (RH), had significant impacts on KwbKlb, KP, [K+] and σsap. Osm varied only with light intensity, while KB varied depending on atmospheric evaporative demand expressed as TA, VPD or RH. Xylem sap pH depended inversely on soil water potential (ΨS) and during daylight also on VPD. Although soil water content was close to saturation during the study period, ΨS influenced also [K+] and σsap. The present study presents evidence of coupling between circadian patterns of xylem sap properties and plant hydraulic conductance providing adequate water supply to foliage under environmental conditions characterised by diurnal variation.


Assuntos
Ritmo Circadiano/fisiologia , Transpiração Vegetal/fisiologia , Populus/metabolismo , Populus/fisiologia , Xilema/fisiologia , Ritmo Circadiano/genética , Concentração de Íons de Hidrogênio , Concentração Osmolar , Transpiração Vegetal/genética , Potássio/metabolismo , Xilema/metabolismo
10.
Glob Chang Biol ; 23(5): 1961-1974, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27779805

RESUMO

The interactive effects of climate variables and tree-tree competition are still insufficiently understood drivers of forest response to global climate change. Precipitation and air humidity are predicted to rise concurrently at high latitudes of the Northern Hemisphere. We investigated whether the growth response of deciduous trees to elevated air humidity varies with their competitive status. The study was conducted in seed-originated silver birch and monoclonal hybrid aspen stands grown at the free air humidity manipulation (FAHM) experimental site in Estonia, in which manipulated stands (n = 3 for both species) are exposed to artificially elevated relative air humidity (6-7% over the ambient level). The study period included three growing seasons during which the stands had reached the competitive stage (trees were 7 years old in the final year). A significant 'treatment×competitive status' interactive effect on growth was detected in all years in birch (P < 0.01) and in one year in aspen stands (P = 0.015). Competitively advantaged trees were always more strongly affected by elevated humidity. Initially the growth of advantaged and neutral trees of both species remained significantly suppressed in humidified stands. In the following years, dominance and elevated humidity had a synergistic positive effect on the growth of birches. Aspens with different competitive status recovered more uniformly, attaining similar relative growth rates in manipulated and control stands, but preserved a significantly lower total growth yield due to severe initial growth stress. Disadvantaged trees of both species were never significantly affected by elevated humidity. Our results suggest that air humidity affects trees indirectly depending on their social status. Therefore, the response of northern temperate and boreal forests to a more humid climate in future will likely be modified by competitive relationships among trees, which may potentially affect species composition and cause a need to change forestry practices.


Assuntos
Mudança Climática , Umidade , Árvores , Betula , Clima , Estônia
11.
Front Plant Sci ; 6: 860, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528318

RESUMO

As changes in air temperature, precipitation, and air humidity are expected in the coming decades, studies on the impact of these environmental shifts on plant growth and functioning are of major importance. Greatly understudied aspects of climate change include consequences of increasing air humidity on forest ecosystems, predicted for high latitudes. The main objective of this study was to find a link between hydraulic acclimation and shifts in trees' resource allocation in silver birch (Betula pendula Roth) in response to elevated air relative humidity (RH). A second question was whether the changes in hydraulic architecture depend on tree size. Two years of application of increased RH decreased the biomass accumulation in birch saplings, but the biomass partitioning among aboveground parts (leaves, branches, and stems) remained unaffected. Increased stem Huber values (xylem cross-sectional area to leaf area ratio) observed in trees under elevated RH did not entail changes in the ratio of non-photosynthetic to photosynthetic tissues. The reduction of stem-wood density is attributable to diminished mechanical load imposed on the stem, since humidified trees had relatively shorter crowns. Growing under higher RH caused hydraulic conductance of the root system (K R) to increase, while K R (expressed per unit leaf area) decreased and leaf hydraulic conductance increased with tree size. Saplings of silver birch acclimate to increasing air humidity by adjusting plant morphology (live crown length, slenderness, specific leaf area, and fine-root traits) and wood density rather than biomass distribution among aboveground organs. The treatment had a significant effect on several hydraulic properties of the trees, while the shifts were largely associated with changes in tree size but not in biomass allocation.

12.
Funct Plant Biol ; 42(6): 565-578, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32480701

RESUMO

This study was performed on hybrid aspen saplings growing at the Free Air Humidity Manipulation site in Estonia. We investigated changes in wood anatomy and hydraulic conductivity in response to increased air humidity. Two hydraulic traits (specific conductivity and leaf-specific conductivity) and four anatomical traits of stem wood-relative vessel area (VA), vessel density (VD), pit area and pit aperture area-were influenced by the humidity manipulation. Stem hydraulic traits decreased in the apical direction, whereas branch hydraulic characteristics tended to be greatest in mid-canopy, associated with branch size. A reduction in VD due to increasing humidity was accompanied by a decrease in vessel lumen diameter, hydraulically weighted mean diameter (Dh), xylem vulnerability index and theoretical hydraulic conductivity. VA and Dh combined accounted for 87.4% of the total variation in kt of branches and 85.5% of that in stems across the treatments. Characters of branch vessels were more stable, and only the vessel-grouping index (the ratio of the total number of vessels to the total number of vessel groupings) was dependent on the interactive effect of the treatment and canopy position. Our results indicate that the increasing atmospheric humidity predicted for high latitudes will result in moderate changes in the structure and functioning of the hybrid aspen xylem.

13.
AoB Plants ; 62014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24887000

RESUMO

An increase in average air temperature and frequency of rain events is predicted for higher latitudes by the end of the 21st century, accompanied by a probable rise in air humidity. We currently lack knowledge on how forest trees acclimate to rising air humidity in temperate climates. We analysed the leaf gas exchange, sap flow and growth characteristics of hybrid aspen (Populus tremula × P. tremuloides) trees growing at ambient and artificially elevated air humidity in an experimental forest plantation situated in the hemiboreal vegetation zone. Humidification manipulation did not affect the photosynthetic capacity of plants, but did affect stomatal responses: trees growing at elevated air humidity had higher stomatal conductance at saturating photosynthetically active radiation (gs sat) and lower intrinsic water-use efficiency (IWUE). Reduced stomatal limitation of photosynthesis in trees grown at elevated air humidity allowed slightly higher net photosynthesis and relative current-year height increments than in trees at ambient air humidity. Tree responses suggest a mitigating effect of higher air humidity on trees under mild water stress. At the same time, trees at higher air humidity demonstrated a reduced sensitivity of IWUE to factors inducing stomatal closure and a steeper decline in canopy conductance in response to water deficit, implying higher dehydration risk. Despite the mitigating impact of increased air humidity under moderate drought, a future rise in atmospheric humidity at high latitudes may be disadvantageous for trees during weather extremes and represents a potential threat in hemiboreal forest ecosystems.

14.
BMC Plant Biol ; 14: 72, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24655599

RESUMO

BACKGROUND: Effects of water deficit on plant water status, gas exchange and hydraulic conductance were investigated in Betula pendula under artificially manipulated air humidity in Eastern Estonia. The study was aimed to broaden an understanding of the ability of trees to acclimate with the increasing atmospheric humidity predicted for northern Europe. Rapidly-induced water deficit was imposed by dehydrating cut branches in open-air conditions; long-term water deficit was generated by seasonal drought. RESULTS: The rapid water deficit quantified by leaf (ΨL) and branch water potentials (ΨB) had a significant (P < 0.001) effect on gas exchange parameters, while inclusion of ΨB in models resulted in a considerably better fit than those including ΨL, which supports the idea that stomatal openness is regulated to prevent stem rather than leaf xylem dysfunction. Under moderate water deficit (ΨL≥-1.55 MPa), leaf conductance to water vapour (gL), transpiration rate and leaf hydraulic conductance (KL) were higher (P < 0.05) and leaf temperature lower in trees grown in elevated air humidity (H treatment) than in control trees (C treatment). Under severe water deficit (ΨL<-1.55 MPa), the treatments showed no difference. The humidification manipulation influenced most of the studied characteristics, while the effect was to a great extent realized through changes in soil water availability, i.e. due to higher soil water potential in H treatment. Two functional characteristics (gL, KL) exhibited higher (P < 0.05) sensitivity to water deficit in trees grown under increased air humidity. CONCLUSIONS: The experiment supported the hypothesis that physiological traits in trees acclimated to higher air humidity exhibit higher sensitivity to rapid water deficit with respect to two characteristics - leaf conductance to water vapour and leaf hydraulic conductance. Disproportionate changes in sensitivity of stomatal versus leaf hydraulic conductance to water deficit will impose greater risk of desiccation-induced hydraulic dysfunction on the plants, grown under high atmospheric humidity, in case of sudden weather fluctuations, and might represent a potential threat in hemiboreal forest ecosystems. There is no trade-off between plant hydraulic capacity and photosynthetic water-use efficiency on short time scale.


Assuntos
Atmosfera , Betula/crescimento & desenvolvimento , Betula/fisiologia , Gases/metabolismo , Umidade , Árvores/crescimento & desenvolvimento , Água/fisiologia , Secas , Fotossíntese , Estômatos de Plantas/fisiologia , Pressão , Chuva , Estações do Ano , Solo , Vapor , Fatores de Tempo , Árvores/fisiologia
15.
J Plant Res ; 127(3): 441-53, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24676970

RESUMO

Light- and nitrogen-use change was examined along productivity gradients in natural grasslands at Laelatu, western Estonia, both at community level and in most abundant species. Aboveground biomass (M) ranged from 341 to 503 g m(-2) in wet (W) and from 248 to 682 g m(-2) in dry (D) community. Aboveground leaf area ratio (aLAR) decreased with rising M in D site, while it increased in W site. In a high-aLAR W community (significantly higher compared to D), adjustment of leaf morphology through an increase in specific leaf area is responsible for an increase in aLAR with rising productivity. In low-aLAR stand, by contrast, adjustment of biomass allocation due to decrease in aboveground leaf mass fraction is primarily responsible for the tendency of aLAR to decline. In conclusion, a decrease in aLAR is not a universal response to increasing M. We hypothesise that there exists an optimum of light acquisition efficiency (ΦM) along a productivity gradient independent of community type. Aboveground nitrogen-use efficiency (aNUE) decreased in high-aLAR, W community with increasing M, while in low-aLAR, D site, there was no relationship along a gradient, although aNUE increased along six plots dominated by graminoids. A trade-off was established between leaf nitrogen content per unit leaf area (N A) and aLAR.


Assuntos
Biomassa , Pradaria , Luz , Nitrogênio/metabolismo , Componentes Aéreos da Planta/metabolismo , Componentes Aéreos da Planta/efeitos da radiação , Poaceae/metabolismo , Poaceae/efeitos da radiação , Estônia , Componentes Aéreos da Planta/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Poaceae/crescimento & desenvolvimento , Solo/química , Especificidade da Espécie
16.
Plant Physiol Biochem ; 68: 104-10, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23681117

RESUMO

Daily dynamics of leaf (K(L)) and soil-to-branch hydraulic conductance (KS-B) was investigated in silver birch (Betula pendula Roth.) using evaporative flux method in situ: water potential drop was measured with a pressure chamber and evaporative flux was estimated as sap flux density measured with sap flow gauges. Canopy position had a significant (P < 0.001) effect on both K(L) and K(S-B). Upper-canopy leaves exhibited 1.7 and soil-to-branch pathway 2.3 times higher hydraulic efficiency than those for lower-canopy. K(L) varied significantly with time of day: K(L) for both upper- and lower-canopy leaves was lowest in the morning and rose gradually achieving maximal values in late afternoon (4.75 and 3.38 mmol m⁻² s⁻¹ MPa⁻¹, respectively). Relevant environmental factors affecting K(L) were photosynthetic photon flux density (Q(P)), air relative humidity (RH) and air temperature (T(A)). K(S-B) started rising in the morning and reached maximum in the lower canopy (1.44 mmol m⁻² s⁻¹ MPa⁻¹) at 1300 h and in the upper canopy (2.52 mmol m⁻² s⁻¹ MPa⁻¹) at 1500 h, decreasing afterwards. Environmental factors controlling K(S-B) were Ψ(S) and Q(P). The diurnal patterns of K(L) reflect a combination of environmental factors and endogenous rhythms. The temporal pattern of K(S-B) refers to daily up- and down-regulation of hydraulic conductance of water transport pathway from soil-root interface to leaves with respect to changing irradiance.


Assuntos
Betula/fisiologia , Folhas de Planta/fisiologia , Betula/metabolismo , Ritmo Circadiano , Regulação para Baixo , Meio Ambiente , Luz , Fotossíntese , Folhas de Planta/metabolismo , Solo , Temperatura , Água/metabolismo
17.
PLoS One ; 7(8): e42648, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22880067

RESUMO

At northern latitudes a rise in atmospheric humidity and precipitation is predicted as a consequence of global climate change. We studied several growth and functional traits of hybrid aspen (Populus tremula L.×P. tremuloides Michx.) in response to elevated atmospheric humidity (on average 7% over the ambient level) in a free air experimental facility during three growing seasons (2008-2010) in Estonia, which represents northern temperate climate (boreo-nemoral zone). Data were collected from three humidified (H) and three control (C) plots, and analysed using nested linear models. Elevated air humidity significantly reduced height, stem diameter and stem volume increments and transpiration of the trees whereas these effects remained highly significant also after considering the side effects from soil-related confounders within the 2.7 ha study area. Tree leaves were smaller, lighter and had lower leaf mass per area (LMA) in H plots. The magnitude and significance of the humidity treatment effect--inhibition of above-ground growth rate--was more pronounced in larger trees. The lower growth rate in the humidified plots can be partly explained by a decrease in transpiration-driven mass flow of NO(3) (-) in soil, resulting in a significant reduction in the measured uptake of N to foliage in the H plots. The results suggest that the potential growth improvement of fast-growing trees like aspens, due to increasing temperature and atmospheric CO(2) concentration, might be smaller than expected at high latitudes if a rise in atmospheric humidity simultaneously takes place.


Assuntos
Altitude , Atmosfera , Mudança Climática , Umidade , Nitrogênio/metabolismo , Transpiração Vegetal/fisiologia , Populus/crescimento & desenvolvimento , Estônia , Hibridização Genética , Folhas de Planta/fisiologia , Caules de Planta/anatomia & histologia , Populus/metabolismo , Chuva , Estações do Ano , Temperatura , Água/metabolismo
18.
Plant Cell Environ ; 34(7): 1079-87, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21414012

RESUMO

Responses of leaf and shoot hydraulic conductance to light quality were examined on shoots of silver birch (Betula pendula), cut from lower ('shade position') and upper thirds of the crowns ('sun position') of trees growing in a natural temperate forest stand. Hydraulic conductances of leaf blades (K(lb) ), petioles (K(P) ) and branches (i.e. leafless stem; K(B) ) were determined using a high pressure flow meter in steady state mode. The shoots were exposed to photosynthetic photon flux density of 200-250 µmol m⁻² s⁻¹ using white, blue or red light. K(lb) depended significantly on both light quality and canopy position (P<0.001), K(B) on canopy position (P<0.001) and exposure time (P=0.014), and none of the three factors had effect on K(P) . The highest values of K(lb) were recorded under the blue light (3.63 and 3.13×10⁻4 kg m⁻² MPa⁻¹ s⁻¹ for the sun and shade leaves, respectively), intermediate values under white light (3.37 and 2.46×10⁻4 kg m⁻² MPa⁻¹ s⁻¹ , respectively) and lowest values under red light (2.83 and 2.02×10⁻4 kg m⁻² MPa⁻¹ s⁻¹, respectively). Light quality has an important impact on leaf hydraulic properties, independently of light intensity or of total light energy, and the specific light receptors involved in this response require identification. Given that natural canopy shade depletes blue and red light, K(lb) may be decreased both by reduced fluence and shifts in light spectra, indicating the need for studies of the natural heterogeneity of K(lb) within and under canopies, and its impacts on gas exchange.


Assuntos
Betula/efeitos da radiação , Folhas de Planta/efeitos da radiação , Brotos de Planta/efeitos da radiação , Água/metabolismo , Análise de Variância , Betula/fisiologia , Luz , Folhas de Planta/fisiologia , Brotos de Planta/fisiologia , Caules de Planta/fisiologia , Caules de Planta/efeitos da radiação , Transpiração Vegetal , Potássio/metabolismo , Temperatura , Xilema/metabolismo
19.
Tree Physiol ; 30(12): 1528-35, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21071503

RESUMO

It is a well-described phenomenon that plant leaves respond to changes in light intensity and duration by adjusting leaf hydraulic efficiency, and there is current consensus that up- or down-regulation of water channels (aquaporins) in the plasma membrane of the bundle sheath and mesophyll cells play a central role in the underlying mechanisms. Recently, experimental evidence has been provided also for light-mediated changes of stem hydraulic conductance (K(stem)) in field-grown laurel plants. This effect was attributed to differences in potassium ion concentration of xylem sap as a function of light conditions. In the present article, we report evidence obtained in silver birch (Betula pendula Roth), supporting the concept of light-mediated modulation of K(stem). Both canopy position (long-term effect) and current photosynthetic photon flux density (PPFD; short-term effect) had a significant impact (P < 0.001) on K(stem) measured in shoots taken from the lower (shade shoots) and upper (sun shoots) third of the crowns of ∼25-year-old trees growing in a natural forest stand. The shade shoots responded more sensitively to light manipulation: K(stem) increased by 51% in shade shoots and 26% in sun shoots when PPFD increased from 70 to 330 µmol m⁻² s⁻¹. In 4-year-old trees growing in a dense experimental plantation, K(stem), specific conductivity of branch-wood (k(bw)) and potassium ion concentration ([K(+)]) in xylem sap varied in accordance with canopy position (P < 0.001). Both K(stem) and k(bw) increased considerably with light availability, increasing within the tree crowns from bottom to top; there was a strong relationship between mean values of K(stem) and [K(+)] in hydraulically sampled branches.


Assuntos
Betula/fisiologia , Luz , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Água/metabolismo , Ecossistema , Transpiração Vegetal/fisiologia
20.
Physiol Plant ; 134(3): 412-20, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18513374

RESUMO

Variation in leaf hydraulic conductance (K(L)) and distribution of resistance in response to light intensity and duration were examined in shoots of silver birch (Betula pendula Roth). K(L) was determined on detached shoots using the evaporative flux method (transpiration was measured with a porometer and water potential drop with a pressure chamber). Although K(L) depended on light duration per se, its dynamics was largely determined by leaf temperature (T(L)). Both upper-crown leaves and branches developed in well-illuminated environment exhibited higher hydraulic efficiency compared with the lower crown, accounting for vertical trends of apparent soil-to-leaf hydraulic conductance in canopy of silver birch revealed in our previous studies. K(L) varied significantly with light intensity, the highest values for both shade and sun foliage were recorded at photosynthetic photon flux density of 330 micromol m(-2) s(-1). Light responses of K(L) were associated evidently with an irradiance-mediated effect on extravascular tissues involving regulation of cell membrane aquaporins. Effects of irradiance on K(L) resulted in changes of Psi(L), bringing about considerable alteration in partitioning of the resistance between leaves and branch (leafless shoot stem): the contribution of leaves to the shoot total resistance decreased from 94% at -1.0 MPa to 75% at -0.2 MPa. Treatment with HgCl2 decreased hydraulic conductance of both leaves and branches, implying that condition of bordered pit membranes or shoot living tissues may be involved in responses of xylem conductance to Hg2+.


Assuntos
Betula/fisiologia , Betula/efeitos da radiação , Luz , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Brotos de Planta/fisiologia , Brotos de Planta/efeitos da radiação , Transpiração Vegetal/efeitos da radiação , Temperatura , Fatores de Tempo , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...