Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0379122, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847573

RESUMO

Malaria-causing Plasmodium parasites have a complex life cycle and present numerous antigen targets that may contribute to protective immune responses. The currently recommended vaccine-RTS,S-functions by targeting the Plasmodium falciparum circumsporozoite protein (CSP), which is the most abundant surface protein of the sporozoite form responsible for initiating infection of the human host. Despite showing only moderate efficacy, RTS,S has established a strong foundation for the development of next-generation subunit vaccines. Our previous work characterizing the sporozoite surface proteome identified additional non-CSP antigens that may be useful as immunogens individually or in combination with CSP. In this study, we examined eight such antigens using the rodent malaria parasite Plasmodium yoelii as a model system. We demonstrate that despite conferring weak protection individually, coimmunizing each of several of these antigens alongside CSP could significantly enhance the sterile protection achieved by CSP immunization alone. Thus, our work provides compelling evidence that a multiantigen preerythrocytic vaccine approach may enhance protection compared to CSP-only vaccines. This lays the groundwork for further studies aimed at testing the identified antigen combinations in human vaccination trials that assess efficacy with controlled human malaria infection. IMPORTANCE The currently approved malaria vaccine targets a single parasite protein (CSP) and results in only partial protection. We tested several additional vaccine targets in combination with CSP to identify those that could enhance protection from infection upon challenge in the mouse malaria model. In identifying several such enhancing vaccine targets, our work indicates that a multiprotein immunization approach may be a promising avenue to achieving higher levels of protection from infection. Our work identified several candidate leads for follow-up in the models relevant for human malaria and provides an experimental framework for efficiently carrying out such screens for other combinations of vaccine targets.

2.
Microbiol Spectr ; 10(6): e0169522, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36226962

RESUMO

Biomedical personnel can become contaminated with nonhazardous reagents used in the laboratory. We describe molecular studies performed on nasal secretions collected longitudinally from asymptomatic laboratory coworkers to determine if they were infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) circulating in the community or with SARS-CoV-2 DNA from a plasmid vector. Participants enrolled in a prospective study of incident SARS-CoV-2 infection had nasal swabs collected aseptically by study staff at enrollment, followed by weekly self-collection of anterior nasal swabs. SARS-CoV-2 diagnosis was performed by a real-time PCR test targeting the nucleocapsid gene. PCR tests targeting SARS-CoV-2 nonstructural protein 10 (nsp10), nsp14, and envelope and three regions of the plasmid vector were performed to differentiate amplification of SARS-CoV-2 RNA from the plasmid vector's DNA. Nasal swabs from four asymptomatic coworkers with positive real-time PCR results for the SARS-CoV-2 nucleocapsid targets were negative when tested for SARS-CoV-2 nsp10, nsp14, and envelope protein. However, nucleic acids extracted from these nasal swabs amplified DNA regions of the plasmid vector used by the coworkers, including the ampicillin and neomycin/kanamycin resistance genes, the promoter-nucleocapsid junction, and unique codon-optimized regions. Nasal swabs from these individuals tested positive repeatedly, including during isolation. Longitudinal detection of plasmid DNA with SARS-CoV-2 nucleocapsid in nasal swabs suggests persistence in nasal tissues or colonizing bacteria. Nonviral plasmid vectors, while regarded as safe laboratory reagents, can interfere with molecular diagnostic tests. These reagents should be handled using proper personal protective equipment to prevent contamination of samples or laboratory personnel. IMPORTANCE Asymptomatic laboratory workers who tested positive for SARS-CoV-2 for days to months were found to harbor a laboratory plasmid vector containing SARS-CoV-2 DNA, which they had worked with in the past, in their nasal secretions. While prior studies have documented contamination of research personnel with PCR amplicons, our observation is novel, as these individuals shed the laboratory plasmid over days to months, including during isolation in their homes. This suggests that the plasmid was in their nasal tissues or that bacteria containing the plasmid had colonized their noses. While plasmids are generally safe, our detection of plasmid DNA in the nasal secretions of laboratory workers for weeks after they had stopped working with the plasmid shows the potential for these reagents to interfere with clinical tests and emphasizes that occupational exposures in the preceding months should be considered when interpreting diagnostic clinical tests.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Teste para COVID-19 , RNA Viral/genética , Estudos Prospectivos
3.
PLoS Pathog ; 18(7): e1010671, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35793394

RESUMO

Blocking Plasmodium, the causative agent of malaria, at the asymptomatic pre-erythrocytic stage would abrogate disease pathology and prevent transmission. However, the lack of well-defined features within vaccine-elicited antibody responses that correlate with protection represents a major roadblock to improving on current generation vaccines. We vaccinated mice (BALB/cJ and C57BL/6J) with Py circumsporozoite protein (CSP), the major surface antigen on the sporozoite, and evaluated vaccine-elicited humoral immunity and identified immunological factors associated with protection after mosquito bite challenge. Vaccination achieved 60% sterile protection and otherwise delayed blood stage patency in BALB/cJ mice. In contrast, all C57BL/6J mice were infected similar to controls. Protection was mediated by antibodies and could be passively transferred from immunized BALB/cJ mice into naïve C57BL/6J. Dissection of the underlying immunological features of protection revealed early deficits in antibody titers and polyclonal avidity in C57BL/6J mice. Additionally, PyCSP-vaccination in BALB/cJ induced a significantly higher proportion of antigen-specific B-cells and class-switched memory B-cell (MBCs) populations than in C57BL/6J mice. Strikingly, C57BL/6J mice also had markedly fewer CSP-specific germinal center experienced B cells and class-switched MBCs compared to BALB/cJ mice. Analysis of the IgG γ chain repertoires by next generation sequencing in PyCSP-specific memory B-cell repertoires also revealed higher somatic hypermutation rates in BALB/cJ mice than in C57BL/6J mice. These findings indicate that the development of protective antibody responses in BALB/cJ mice in response to vaccination with PyCSP was associated with increased germinal center activity and somatic mutation compared to C57BL/6J mice, highlighting the key role B cell maturation may have in the development of vaccine-elicited protective antibodies against CSP.


Assuntos
Vacinas Antimaláricas , Malária , Animais , Anticorpos Antiprotozoários , Formação de Anticorpos , Centro Germinativo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas de Protozoários/genética
4.
Cell Rep Med ; 2(4): 100253, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33842901

RESUMO

The fate of protective immunity following mild severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection remains ill defined. Here, we characterize antibody responses in a cohort of participants recovered from mild SARS-CoV-2 infection with follow-up to 6 months. We measure immunoglobulin A (IgA), IgM, and IgG binding and avidity to viral antigens and assess neutralizing antibody responses over time. Furthermore, we correlate the effect of fever, gender, age, and time since symptom onset with antibody responses. We observe that total anti-S trimer, anti-receptor-binding domain (RBD), and anti-nucleocapsid protein (NP) IgG are relatively stable over 6 months of follow-up, that anti-S and anti-RBD avidity increases over time, and that fever is associated with higher levels of antibodies. However, neutralizing antibody responses rapidly decay and are strongly associated with declines in IgM levels. Thus, while total antibody against SARS-CoV-2 may persist, functional antibody, particularly IgM, is rapidly lost. These observations have implications for the duration of protective immunity following mild SARS-CoV-2 infection.


Assuntos
Anticorpos Neutralizantes/metabolismo , COVID-19/imunologia , Imunoglobulina M/metabolismo , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , COVID-19/complicações , COVID-19/patologia , COVID-19/virologia , Feminino , Febre/etiologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Proteínas do Nucleocapsídeo/imunologia , Domínios Proteicos/imunologia , Multimerização Proteica/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...