Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1098150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113232

RESUMO

Over the last 30 years, the description of microbial diversity has been mainly based on culture-independent approaches (metabarcoding and metagenomics) allowing an in-depth analysis of microbial diversity that no other approach allows. Bearing in mind that culture-dependent approaches cannot replace culture-independent approaches, we have improved an original method for isolating strains consisting of "culturing" grains of sand directly on Petri dishes (grain-by-grain method). This method allowed to cultivate up to 10% of the bacteria counted on the surface of grains of the three sites studied in the Great Western Erg in Algeria (Timoudi, Béni Abbès, and Taghit), knowing that on average about 10 bacterial cells colonize each grain. The diversity of culturable bacteria (collection of 290 strains) predicted by 16S rRNA gene sequencing revealed that Arthrobacter subterraneus, Arthrobacter tecti, Pseudarthrobacter phenanthrenivorans, Pseudarthrobacter psychrotolerans, and Massilia agri are the dominant species. The comparison of the culture-dependent and -independent (16S rRNA gene metabarcoding) approaches at the Timoudi site revealed 18 bacterial genera common to both approaches with a relative overestimation of the genera Arthrobacter/Pseudarthrobacter and Kocuria, and a relative underestimation of the genera Blastococcus and Domibacillus by the bacterial culturing approach. The bacterial isolates will allow further study on the mechanisms of tolerance to desiccation, especially in Pseudomonadota (Proteobacteria).

2.
PLoS One ; 18(2): e0267220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36800363

RESUMO

The western corn rootworm (WCR) Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) remains one of the economically most important pests of maize (Zea mays) due to its adaptive capabilities to pest management options. This includes the ability to develop resistance to some of the commercial pesticidal proteins originating from different strains of Bacillus thuringiensis. Although urgently needed, the discovery of new, environmentally safe agents with new modes of action is a challenge. In this study we report the discovery of a new family of binary pesticidal proteins isolated from several Chryseobacterium species. These novel binary proteins, referred to as GDI0005A and GDI0006A, produced as recombinant proteins, prevent growth and increase mortality of WCR larvae, as does the bacteria. These effects were found both in susceptible and resistant WCR colonies to Cry3Bb1 and Cry34Ab1/Cry35Ab1 (reassigned Gpp34Ab1/Tpp35Ab1). This suggests GDI0005A and GDI0006A may not share the same binding sites as those commercially deployed proteins and thereby possess a new mode of action. This paves the way towards the development of novel biological or biotechnological management solutions urgently needed against rootworms.


Assuntos
Bacillus thuringiensis , Chryseobacterium , Besouros , Praguicidas , Animais , Zea mays/genética , Chryseobacterium/metabolismo , Praguicidas/farmacologia , Endotoxinas/metabolismo , Proteínas de Bactérias/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Besouros/genética , Larva/metabolismo , Bacillus thuringiensis/genética , Controle Biológico de Vetores , Resistência a Inseticidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...