Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Cancer Drug Targets ; 19(6): 495-503, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30479215

RESUMO

BACKGROUND: The major attention has been received by the natural products in the prevention of diseases due to their pharmacological role. OBJECTIVE: The major focus of the study was to search for highly potential anti-cancer compounds from marine Streptomyces sp. VITJS4 (NCIM No. 5574). METHODS: Cytotoxic assay was examined by MTT assay on HepG2 cells. Bioassay-guided fractionation of the ethyl acetate extract from the fermented broth led to the isolation of the compound. The lead compound structure was elucidated by combined NMR and MS analysis, and the absolute configuration was assigned by extensive spectroscopic analysis. RESULTS: On the basis of spectroscopic data, the compound was identified as 1, 2 benzenedicarboxylic acid, mono 2-ethylhexyl (BMEH). The compound exhibited in vitro anticancer potential against liver (HepG2) cancer cells. Based on the flow cytometric analysis, it was evident that the BMEH was also effective in arresting the cell cycle at G1 phase. Further, the Western blotting analysis confirmed the down-regulation of Bcl-2 family proteins, and activation of caspase-9 and 3. The molecular docking and dynamics simulation were performed to reveal the activity of the compound over a time period of 10ns. From the molecular dynamics studies, it was found that the stability and compactness were attained by the protein by means of the compound interaction. CONCLUSION: This study highlights our collaborative efforts to ascertain lead molecules from marine actinomycete. This is the first and foremost report to prove the mechanistic studies of the purified compound 1, 2-benzene dicarboxylic acid, mono(2-ethylhexyl) ester isolated from marine Streptomyces sp.VITJS4 against HepG2 cells.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Antineoplásicos/farmacologia , Ácidos Ftálicos/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Antifúngicos/química , Antifúngicos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ácidos Ftálicos/química , Proteínas de Ligação a Poli-ADP-Ribose/química , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Domínios Proteicos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Streptomyces/química
2.
Jundishapur J Microbiol ; 8(10): e23567, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26587211

RESUMO

BACKGROUND: Thrombolytic therapy has become a conventional treatment for acute myocardial infarction (AMI), yet currently, clinically prescribed thrombolytic drugs have problems such as delayed action and other side effects. Fibrinolytic enzymes have attracted interest as thrombolytic agents because of their efficiency in the fibrinolytic process, including plasmin activation. Nattokinase (NK) is a potent fibrinolytic agent for thrombosis therapy. OBJECTIVES: The aim of this study was to enhance the production of NK from Pseudomonas aeruginosa CMSS by media optimization and strain improvement. MATERIALS AND METHODS: In the present study, a potent NK-producing strain was isolated from cow milk and identified. To enhance the yield of NK, effect of various parameters such as pH, temperature, carbon source, nitrogen source and inoculum size were optimized. Strain improvement of P. aeruginosa CMSS was done by random UV-mutagenesis. Nattokinase was partially purified and the activity was determined by the casein digestion method, blood clot lysis and fibrin degradation assay. RESULTS: Based on morphological, biochemical and molecular characterization, the strain was confirmed as P. aeruginosa (GenBank accession number: JX112657), designated as P. aeruginosa CMSS. The optimum condition at pH 7 and temperature at 25˚C showed activity of NK as 1514 U mL(-1) and 1532 U mL(-1), respectively. Sucrose as the carbon source and shrimp shell powder (SSP) as the nitrogen source expressed NK activity of 1721 U mL(-1) and 2524 U mL(-1), respectively. At 1% inoculum size, the maximum rate of enzyme production was achieved with 2581 U mL(-1). The NK activity of the mutant strain UV60 was 4263 U mL(-1), indicating a two-fold increase in activity compared to the wild strain (2581 UmL(-1)). Nattokinase produced from mutant strain P. aeruginosa CMSS UV60 showed 94% blood clot lysis at ten minutes. The degradation of fibrin clot by the produced NK was observed after two hours of incubation. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) confirmed the molecular mass of CMSS UV60 NK to be 21kDa. CONCLUSIONS: The current study demonstrated the enhanced production of NK by P. aeruginosa CMSS. This study is unique and the findings are the first report on the production of NK from P. aeruginosa CMSS isolated from cow milk.

3.
Pharmacogn Mag ; 11(Suppl 3): S469-73, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26929583

RESUMO

BACKGROUND: Recently, numerous pathogens have developed resistance due to the indiscriminate use of commercial therapeutic drugs. OBJECTIVE: The main aim of the study was to evaluate the bioactive potential of the Streptomyces spectabilis VITJS10 crude extract. MATERIALS AND METHODS: The S. spectabilis VITJS10 ethyl acetate extract was tested for antibacterial, antioxidant, and cytotoxic properties. Genotypic characterization was done using 16S r-DNA partial gene amplification and sequencing. The authenticity of the crude chemical constitutes were determined by gas chromatography-mass spectrometry (GC-MS). RESULTS: The antibacterial potential revealed the effective activity against Shigellaflexneri (MTCC No: 1457) (22 mm), Salmonella typhi (MTCC No: 1167) (23 mm), Escherichia coli (MTCC No: 1588) (22 mm), Pseudomonas aeruginosa (MTCC No: 4676) (22 mm) at 20 mg/mL concentration. Scavenging ability of the extract was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay revealing its 95% inhibition at 5 mg/mL concentration. Hepatocellular cancer cells (HepG2) cell line was used to evaluate the cytotoxicity by 3-(4, 5-dimethyl thiazol-2yl)-2, 5-diphenyl tetrazolium bromide assay. The extract showed maximum inhibition at IC50 of 250 µg/mL with 53.6% cell viability. The highest 16S rRNA gene sequence homogeneity was observed 99% similar with the novel strain S. spectabilis S3-1. The chemical components of the crude extract of VITJS10 were detected with 37 chemical constituents. However three major compounds were identified, namely Sulfurous acid, 2-ethylhexyl tridecyl ester, Phenol, 2,4-bis (1,1-dimethylethyl), and Trans-2-methyl-4-n-pentylthiane, S, S-Dioxide. CONCLUSION: Hence the present study justifies the overwhelming circumstantial evidence as the most bioactive metabolites from the marine origin, which has potential utilization in pharmaceutical industry. SUMMARY: The aim of this study was to explore the bioactive potential of marine Streptomyces sp. isolated from marine soil and understand the bioactive properties of the crude extracts. It is clearly evident from the study that the bioactive metabolites produced by Streptomyces sp. exhibited good antibacterial, antioxidant and anticancer activity. Our results indicated that Starch casein medium was the good base for bioactive metabolite production. The taxonomic position of Streptomyces sp. isolated revealed unique pattern of phenotypic properties that distinguished it from representatives. The molecular characterization results provided valuable data for establishing the internal taxonomic structure of the genus. Hence high mortality rates, serious side effects, deficiencies of the available chemotherapeutics, and high costs during treatment clearly underscore the need to develop new anticancer agents, With the above significant features the strain could be recommended for its use in medicinal and agricultural sectors, an extensive knowledge on the behavior of natural compounds can be gained for the benefit of health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...