Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1351303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881736

RESUMO

Introduction: Fowl adenovirus (FAdV) is a significant pathogen in poultry, causing various diseases such as hepatitis-hydropericardium, inclusion body hepatitis, and gizzard erosion. Different serotypes of FAdV are associated with specific conditions, highlighting the need for targeted prevention strategies. Given the rising prevalence of FAdV-related diseases globally, effective vaccination and biosecurity measures are crucial. In this study, we explore the potential of structural proteins to design a multi-epitope vaccine targeting FAdV. Methods: We employed an in silico approach to design the multi-epitope vaccine. Essential viral structural proteins, including hexon, penton, and fiber protein, were selected as vaccine targets. T-cell and B-cell epitopes binding to MHC-I and MHC-II molecules were predicted using computational methods. Molecular docking studies were conducted to validate the interaction of the multi-epitope vaccine candidate with chicken Toll-like receptors 2 and 5. Results: Our in silico methodology successfully identified potential T-cell and B-cell epitopes within the selected viral structural proteins. Molecular docking studies revealed strong interactions between the multi-epitope vaccine candidate and chicken Toll-like receptors 2 and 5, indicating the structural integrity and immunogenic potential of the designed vaccine. Discussion: The designed multi-epitope vaccine presents a promising approach for combating FAdV infections in chickens. By targeting essential viral structural proteins, the vaccine is expected to induce a robust immunological response. The in silico methodology utilized in this study provides a rapid and cost-effective means of vaccine design, offering insights into potential vaccine candidates before experimental validation. Future studies should focus on in vitro and in vivo evaluations to further assess the efficacy and safety of the proposed vaccine.


Assuntos
Infecções por Adenoviridae , Galinhas , Epitopos de Linfócito B , Epitopos de Linfócito T , Simulação de Acoplamento Molecular , Doenças das Aves Domésticas , Vacinas de Subunidades Antigênicas , Animais , Vacinas de Subunidades Antigênicas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito B/imunologia , Infecções por Adenoviridae/prevenção & controle , Infecções por Adenoviridae/veterinária , Infecções por Adenoviridae/imunologia , Vacinas Virais/imunologia , Proteínas Estruturais Virais/imunologia , Proteínas Estruturais Virais/genética , Aviadenovirus/imunologia , Aviadenovirus/genética , Simulação por Computador , Vacinas de Subunidades Proteicas
2.
Front Plant Sci ; 14: 1298880, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38322423

RESUMO

Mycoplasma gallisepticum (MG) is responsible for chronic respiratory disease in avian species, characterized by symptoms like respiratory rales and coughing. Existing vaccines for MG have limited efficacy and require multiple doses. Certain MG cytoadherence proteins (GapA, CrmA, PlpA, and Hlp3) play a crucial role in the pathogen's respiratory tract colonization and infection. Plant-based proteins and therapeutics have gained attention due to their safety and efficiency. In this study, we designed a 21.4-kDa multi-epitope peptide vaccine (MEPV) using immunogenic segments from cytoadherence proteins. The MEPV's effectiveness was verified through computational simulations. We then cloned the MEPV, introduced it into the plant expression vector pSiM24-eGFP, and expressed it in Nicotiana benthamiana leaves. The plant-produced MEPV proved to be immunogenic when administered intramuscularly to chickens. It significantly boosted the production of immunoglobulin Y (IgY)-neutralizing antibodies against cytoadherence protein epitopes in immunized chickens compared to that in the control group. This preliminary investigation demonstrates that the plant-derived MEPV is effective in triggering an immune response in chickens. To establish an efficient poultry health management system and ensure the sustainability of the poultry industry, further research is needed to develop avian vaccines using plant biotechnology.

3.
Metabolites ; 12(11)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36422285

RESUMO

Nature gives immense resources that are beneficial to humankind. The natural compounds present in plants provide primary nutritional values to our diet. Apart from food, plants also provide chemical compounds with therapeutic values. The importance of these plant secondary metabolites is increasing due to more studies revealing their beneficial properties in treating and managing various diseases and their symptoms. Among them, flavonoids are crucial secondary metabolite compounds present in most plants. Of the reported 8000 flavonoid compounds, luteolin is an essential dietary compound. This review discusses the source of the essential flavonoid luteolin in various plants and its biosynthesis. Furthermore, the potential health benefits of luteolins such as anti-cancer, anti-microbial, anti-inflammatory, antioxidant, and anti-diabetic effects and their mechanisms are discussed in detail. The activity of luteolin and its derivatives are diverse, as they help to prevent and control many diseases and their life-threatening effects. This review will enhance the knowledge and recent findings regarding luteolin and its therapeutic effects, which are certainly useful in potentially utilizing this natural metabolite.

4.
Horm Mol Biol Clin Investig ; 43(1): 105-112, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34881529

RESUMO

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a novel molecular tool. In recent days, it has been highlighted a lot, as the Nobel prize was awarded for this sector in 2020, and also for its recent use in Covid-19 related diagnostics. Otherwise, it is an eminent gene-editing technique applied in diverse medical zones of therapeutics in genetic diseases, hematological diseases, infectious diseases, etc., research related to molecular biology, cancer, hereditary diseases, immune and inflammatory diseases, etc., diagnostics related to infectious diseases like viral hemorrhagic fevers, Covid-19, etc. In this review, its discovery, working mechanisms, challenges while handling the technique, recent advancements, applications, alternatives have been discussed. It is a cheaper, faster technique revolutionizing the medicinal field right now. However, their off-target effects and difficulties in delivery into the desired cells make CRISPR, not easily utilizable. We conclude that further robust research in this field may promise many interesting, useful results.


Assuntos
COVID-19 , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , COVID-19/diagnóstico , Sistemas CRISPR-Cas , Terapia Genética/métodos , Humanos , Biologia Molecular , SARS-CoV-2/genética
5.
Plants (Basel) ; 11(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35009050

RESUMO

MicroRNAs (miRNAs) are small noncoding RNA molecules that play crucial post-transcriptional regulatory roles in plants, including development and stress-response signaling. However, information about their involvement in secondary metabolism is still limited. Murraya koenigii is a popular medicinal plant, better known as curry leaves, that possesses pharmaceutically active secondary metabolites. The present study utilized high-throughput sequencing technology to investigate the miRNA profile of M. koenigii and their association with secondary metabolite biosynthesis. A total of 343,505 unique reads with lengths ranging from 16 to 40 nt were obtained from the sequencing data, among which 142 miRNAs were identified as conserved and 7 as novel miRNAs. Moreover, 6078 corresponding potential target genes of M. koenigii miRNAs were recognized in this study. Interestingly, several conserved and novel miRNAs of M. koenigii were found to target key enzymes of the terpenoid backbone and the flavonoid biosynthesis pathways. Furthermore, to validate the sequencing results, the relative expression of eight randomly selected miRNAs was determined by qPCR. To the best of our knowledge, this is the first report of the M. koenigii miRNA profile that may provide useful information for further elucidation of the involvement of miRNAs in secondary metabolism. These findings might be crucial in the future to generate artificial-miRNA-based, genetically engineered M. koenigii plants for the overproduction of medicinally highly valuable secondary metabolites.

6.
Nanomicro Lett ; 12(1): 45, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-34138283

RESUMO

Nanotechnology is a key advanced technology enabling contribution, development, and sustainable impact on food, medicine, and agriculture sectors. Nanomaterials have potential to lead qualitative and quantitative production of healthier, safer, and high-quality functional foods which are perishable or semi-perishable in nature. Nanotechnologies are superior than conventional food processing technologies with increased shelf life of food products, preventing contamination, and production of enhanced food quality. This comprehensive review on nanotechnologies for functional food development describes the current trends and future perspectives of advanced nanomaterials in food sector considering processing, packaging, security, and storage. Applications of nanotechnologies enhance the food bioavailability, taste, texture, and consistency, achieved through modification of particle size, possible cluster formation, and surface charge of food nanomaterials. In addition, the nanodelivery-mediated nutraceuticals, synergistic action of nanomaterials in food protection, and the application of nanosensors in smart food packaging for monitoring the quality of the stored foods and the common methods employed for assessing the impact of nanomaterials in biological systems are also discussed.

7.
Int J Biol Macromol ; 123: 648-656, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30414420

RESUMO

Purple acid phosphatase (PAP) family genes play a crucial role in the phosphorus (P) foraging and recycling. There are 25 putative Jatropha curcas PAP genes (JcrPAP) were identified and classified into three groups based on their molecular weights. Subcellular localization prediction indicated that most of the JcrPAPs were localized to secretory pathway. Several PAPs possess signal peptide motifs and varied numbers of N-glycosylation and transmembrane helix motifs. JcrPAP proteins have 3-5 active pocket sites comprising 1 to 11 binding residues which interact with different ligands such as iron (Fe), N-acetyl l-d-Glucosamine (NAG), zinc (Zn) and manganese (Mn). The core structure of the predicted JcrPap28 was similar to the Ipomoea batatas Pap protein. Most of the JcrPAP genes showed higher expression in the root tissues compared to stem and leaf tissues. Several JcrPAP genes were upregulated under low phosphorus conditions. JcrPAP genes such as JcrPap26b, JcrPap27b, and JcrPap28 have shown multifold induction in low phosphorus treated plants which suggest that these genes might be involved in phosphorus metabolism. The present study provided the structural variations and expression regulation of JcrPAP genes in the economically viable biodiesel crop and it would be helpful for the crop improvement under phosphorus limiting conditions.


Assuntos
Fosfatase Ácida/química , Genoma de Planta/genética , Glicoproteínas/química , Jatropha/química , Sinais Direcionadores de Proteínas , Fosfatase Ácida/genética , Domínio Catalítico , Regulação da Expressão Gênica de Plantas , Glicoproteínas/genética , Glicosilação , Jatropha/genética , Família Multigênica/genética , Fósforo/química , Fósforo/metabolismo , Folhas de Planta/química , Folhas de Planta/genética
8.
Genomics Proteomics Bioinformatics ; 10(6): 364-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23317705

RESUMO

Boerhavia diffusa (B. diffusa), also known as Punarnava, is an indigenous plant in India and an important component in traditional Indian medicine. The accurate identification and collection of this medicinal herb is vital to enhance the drug's efficacy and biosafety. In this study, a DNA barcoding technique has been applied to identify and distinguish B. diffusa from its closely-related species. The phylogenetic analysis was carried out for the four species of Boerhavia using barcode candidates including nuclear ribosomal DNA regions ITS, ITS1, ITS2 and the chloroplast plastid gene psbA-trnH. Sequence alignment revealed 26% polymorphic sites in ITS, 30% in ITS1, 16% in ITS2 and 6% in psbA-trnH, respectively. Additionally, a phylogenetic tree was constructed for 15 species using ITS sequences which clearly distinguished B. diffusa from the other species. The ITS1 demonstrates a higher transition/transversion ratio, percentage of variation and pairwise distance which differentiate B. diffusa from other species of Boerhavia. Our study revealed that ITS and ITS1 could be used as potential candidate regions for identifying B. diffusa and for authenticating its herbal products.


Assuntos
Código de Barras de DNA Taxonômico , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Nyctaginaceae/classificação , Plantas Medicinais/classificação , Sequência de Bases , Cloroplastos/genética , DNA de Plantas/química , DNA Espaçador Ribossômico/química , Índia , Nyctaginaceae/genética , Filogenia , Plantas Medicinais/genética , Alinhamento de Sequência , Especificidade da Espécie
9.
Bioinformation ; 3(1): 24-7, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19052662

RESUMO

MaturaseK gene (MatK) of chloroplast is highly conserved in plant systematics which is involved in Group II intron splicing. The size of the gene is 1500 bp in length, located with in the intron of trnK. In the present study, matK gene from Zingiberaceae was taken for the analysis of variants, parsimony site, patterns, transition/tranversion rates and phylogeny. The family of Zingiberaceae comprises 47 genera with medicinal values. The matK gene sequence have been obtained from genbank and used for the analysis. The sequence alignments were performed by Clustal X, transition/transversion rates were predicted by MEGA and phylogenetic analyses were carried out by PHYLIP package. The result indicates that the Zingiberaceae genus Afromonum, Alpinia, Globba, Curcuma and Zingiber shows polyphylogeny. The overall variants between the species are 24% and transition/transversion rate is 1.54. Phylogenetic tree was designed to identify the ideal regions that could be used for defining the inter and intera-generic relationships. From this study it could be concluded that the matK gene is a good candidate for DNA barcoding of plant family Zingiberaceae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...