Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 261(Pt 1): 129592, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272412

RESUMO

Regarding food security and waste reduction, preserving fruits and vegetables is a vital problem. This comprehensive study examines the innovative potential of coatings and packaging made of nanocellulose to extend the shelf life of perishable foods. The distinctive merits of nanocellulose, which is prepared from renewable sources, include exceptional gas barrier performance, moisture retention, and antibacterial activity. As a result of these merits, it is a good option for reducing food spoilage factors such as oxidation, desiccation, and microbiological contamination. Nanocellulose not only enhances food preservation but also complies with industry-wide environmental objectives. This review explores the many facets of nanocellulose technology, from its essential characteristics to its use in the preservation of fruits and vegetables. Furthermore, it deals with vital issues including scalability, cost-effectiveness, and regulatory constraints. While the use of nanocellulose in food preservation offers fascinating potential, it also wants to be cautiously careful to assure affordability, effectiveness, and safety. To fully use the potential of nanocellulose and advance the sustainability plan in the food business, collaboration between scientists, regulatory bodies, and industry stakeholders is important as we stand on the cusp of a revolutionary era in food preservation.


Assuntos
Embalagem de Alimentos , Verduras , Verduras/microbiologia , Frutas/microbiologia , Conservação de Alimentos
2.
Mol Biotechnol ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907811

RESUMO

The present study focused on preparing and characterizing magnetite-polyvinyl alcohol (PVA) hybrid nanoparticles using Acanthophora spicifera marine algae extract as a reducing agent. Various analytical techniques, including UV-Visible spectrometry, Fourier-transform infrared (FTIR) analysis, energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis, were used to characterize the nanoparticles. The results showed the successful synthesis of nanoparticles with a characteristic color change and absorption peak at 400 nm in UV-Visible spectrometry. FTIR analysis indicated an interaction between the carboxyl group and magnetite-polyvinyl alcohol hybrid ions. SEM analysis revealed spherical nanoparticles with sizes ranging from 20 to 100 nm. EDX analysis confirmed the presence of strong magnetite peaks in Acanthophora spicifera, validating successful preparation. XRD analysis indicated the crystalline nature of the nanoparticles. Furthermore, the antimicrobial potential of As-PVA-MNPs was evaluated, demonstrating a significant zone of inhibition against tested bacterial and fungal samples at a concentration of 100 µg. These findings suggest the promising antimicrobial activity of the synthesized nanoparticles for potential applications in combating pathogenic microorganisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...